

Polymer Artificial Muscles
Controls and Applications with Low-Cost Twist Insertion Fiber Actuators

A Major Qualifying Project

Submitted to the Faculty of Worcester Polytechnic Institute

in partial fulfillment of the requirements for the

Degree of Bachelor of Science in Robotics Engineering

By

William Hunt

Robotics Engineering Program

Date: 6 May 2015

Project Advisor:

Professor Cagdas Onal

This report represents the work of a WPI undergraduate student submitted to the faculty as

evidence of a degree requirement. WPI routinely publishes these reports on its web site without

editorial or peer review. For more information about the projects program at WPI, see

http://www.wpi.edu/Academics/Projects.

ii

Abstract

Functional artificial muscle fibers could reduce the cost, weight and complexity of many robotic

systems, and are therefore an attractive development goal in robotics engineering. When coiled

into flexible helical artificial muscle fibers, Nylon monofilaments produce linear tensile

actuation under thermal stimulus. In this research the behavior of these coiled muscle fibers was

investigated using a test fixture designed to emulate the conditions in a real application. Tests

showed muscle performance consistent with past research, but also revealed a previously

undocumented thermal effect wherein muscles changed length unexpectedly under variable-

loading conditions at high temperatures. This effect, along with other known properties of the

muscle fibers, was modeled in a parametric simulation environment, and parameter estimation

utilities were used to quantitatively match the model to the real-world response. The matched

parameter model was used to simulate a computer controlled antagonistic servo-joint, which

illustrated the potential of the muscle fibers for real-world application, and the controls

challenges introduced by the newly discovered thermal effect.

iii

Acknowledgements

It is difficult to thoroughly document the network of exceptional individuals who maintain the

world-class research environment at Worcester Polytechnic Institute. The author Mr. Hunt

wishes to express particular gratitude for the continuing assistance of advisor Prof. Cagdas Onal,

along with his doctoral research staff in the WPI Soft Robotics Laboratory. Special thanks are

extended to Arthur C. Heinricher at WPI, for his ongoing encouragement and support of the

author’s work leading up to this project.

Additional thanks to:

E.A. Partlow III, Cornell University

R. Baughman, U.T. Dallas

Washburn Laboratories, WPI

T. Chaulk & J. Johnson, WPI

P. Radhakrishnan, WPI

iv

Contents

1 Introduction ... 1

1.1 Basis for this Research ... 1

1.2 Contributions to the Field ... 2

2 Background .. 2

2.1 Muscle Applications in Robotics ... 2

2.2 Past Work in Artificial Muscles ... 4

2.3 Twist-Insertion Polymer Muscles .. 6

2.4 Twist Mechanics and Anisotropism ... 8

2.5 Achieving Linear Actuation ... 9

3 Methods ... 10

3.1 Method of Fiber Generation ... 10

3.2 Preliminary Characterizations .. 12

3.3 Design of Antagonistic Configuration ... 18

3.4 Rotary Fixture Characterization ... 22

3.5 Parametric Modeling .. 25

3.6 Controls for Antagonistic Configuration.. 27

4 Results ... 27

4.1 Preliminary Test Findings .. 27

4.2 Model Findings .. 36

v

4.3 Parameter Estimation Findings .. 45

4.4 Controls Findings ... 52

5 Discussion and Conclusions .. 58

5.1 Application Notes ... 58

5.2 Further Research .. 60

5.3 Project Conclusion ... 62

6 References ... 63

APPENDIX A Antagonistic Stimulus Fixture Design Documents ... 65

APPENDIX B Antagonistic Stimulus Fixture Software.. 76

APPENDIX C Antagonistic Stimulus Fixture Operating Instructions 83

1

1 INTRODUCTION

1.1 BASIS FOR THIS RESEARCH

There are a number of robotic applications for low-cost muscle-like actuators, especially in

rapidly developing fields such as humanoid control, active prosthetic design and wearable textile

devices [5]. Artificial muscle technologies could lead to an era of dramatically increased human-

robot interaction and integration, wherein humans receive replacement artificial muscle implants,

and robots become just as nimble and dexterous as their human designers [29].

Haines et al. have demonstrated a novel approach for synthesizing artificial muscle-like actuator

fibers from commercially available, low-cost polymer fibers such as fishing line by twist

insertion. These fibers exhibit contraction of up to 49%, with considerable load capacity and very

low hysteresis. They offer cost, simplicity, weight and strength advantages over a number of

existing technologies. In particular, they possess a high strength-to-weight ratio, making them

potentially valuable in aerospace applications. Several example configurations for the application

of these fibers have already been demonstrated, including textile-woven, braided, plied and

bundled actuators, driven electro- and hydro-thermally [5].

This project investigates robotic design applications and limitations for the polymer muscle

fibers of Haines et al. in research and development phases. First, elements of muscle fiber

production are reproduced. Next, a prototype actuator configuration is developed, and used to

perform an assay of non-repeatable elements in muscle actuation, and the resulting limitations on

muscle control. Finally, a controlled model for a 1-DOF rotational robotic joint (based upon the

prototype actuator configuration) is produced in-silico. The dynamical characteristics of this

simulated joint are documented, and potential applications are discussed.

2

1.2 CONTRIBUTIONS TO THE FIELD

This project attempts to recreate the helical muscle fibers of Haines et al., characterize some of

their behavioral properties, and demonstrate a prototype antagonistic rotary actuator

configuration in-silico, using Joule heating and passive cooling. The end result and primary

robotic design component of this project is a rotational joint fixture that can be driven by

antagonistically biased (prestrained) muscle fibers, and which may be used by a future project

group to implement the simulated joint from this project. This joint illustrates the applicability of

twist-insertion fiber actuators to controlled robots, and reveals the limitations of the actuators. As

such, this work also provides an outline for future research in soft robotic actuation systems,

especially those that require high work capacity, including aerospace, micro- and nano-robots,

and ultra-low-cost systems.

2 BACKGROUND

2.1 MUSCLE APPLICATIONS IN ROBOTICS

Many robotics applications require control of the position and/or dynamical characteristics of a

mechanism. There is widespread interest in a category of actuators that behave similarly to

natural muscle fibers, affording positional, force and/or impedance control while maintaining a

flexible, lightweight form factor. Artificial muscle technologies are an attractive solution to

challenging robotics problems, especially in robots such as humanoids, manipulators and

prostheses [5]. Artificial muscles may also be useful in aerospace, as they provide a light-weight

alternative to existing transducer technology. Contrary to traditional cost- and weight-expensive

geared motors, artificial muscle systems have the potential to be both physically and

operationally flexible, and customizable for a wide range of applications [29].

3

Pneumatic muscle systems are already known to be well suited for complicated open-chain

robots [10]; these systems have been used in various robots including humanoid walking systems

[19] and dexterous graspers [27]. Force application contexts that preclude more traditional

actuators due to weight, noise or cost are good potential applications for pneumatic muscles. For

example, Serres [16] showed an application for pneumatic muscles in human resistive strength

training under orbital microgravity.

Natural muscles operate in antagonistic pairs or groups, which afford precise control of

movement [1]. Human motion is dependent upon the dynamical characteristics of these muscle

groups. Modern walking prostheses seek to

emulate the properties of natural limbs,

which can dynamically adjust mechanical

joint impedance properties [11]. While

existing systems such as hysteresis brakes

and series elastic actuators allow this type of

control, these technologies can be

cumbersome and expensive. Artificial

muscle systems may solve this problem in a

more compact, comfortable package [11].

Developers of walking and humanoid robots

have attempted to emulate the dynamical

properties of natural muscle groups [18].

Artificial muscles are likely to improve the

realism of these bio-mimetic designs,

Fig. 1: Atlas, a modern humanoid robot,
image credit WPI via DARPA [25]

4

because these actuators typically operate in antagonistic groups [10]. Complicated movements

such as walking have already been achieved using this approach [19].

Artificial muscles have been applied in non-traditional applications. Madden et al. [14] provided

case studies detailing naval-specific muscle applications for controlling the shape and orientation

of propeller blades. An example variable-camber propeller was proposed for the Expendable,

Mobile Antisubmarine Warfare Training Target (EMATT) vehicle, and some existing artificial

muscle technologies were shown to be feasible actuation systems for this design [14]. Because of

their light weight, artificial muscles could also be valuable in aerospace systems.

2.2 PAST WORK IN ARTIFICIAL MUSCLES

Artificial muscle research has spanned various technologies, many of which are based around

specialized materials. In some cases, esoteric alloys, polymers and gels have been shown to

exhibit muscle-like behavior. In other cases, more conventional materials and technologies have

been formed into macroscopic structure that create the desired behavior. Artificial muscle

research draws heavily on the findings of materials science and nanotechnology scholars.

Perhaps the most conventional and well-known artificial muscle technology is the pneumatic or

McKibben air muscle [2]. A pneumatic muscle is constructed by containing an airtight, flexible

tube or bladder within a braided, non-

extensible fiber shell. When the bladder is

inflated, the shell converts the inflating

pressure into a compressive or tensile

force along the length of the muscle,

resulting in displacement and/or force

Fig. 2: Robotic hand using air muscles,
image credit Shadow Robot Company
[26]

5

application. These actuators are strong and light, but (like other fluidic actuators) they require

pressure and valve systems [2].

As noted above, pneumatic muscles have seen significant adoption [10][19][27][16]. One

application, a dexterous hand from the Shadow Robot Company, is shown in Fig. 2 [26].

Existing applications for pneumatic muscles may benefit from the introduction of more advanced

muscle-like actuators that do not require fluidic control overhead.

Relatively common material-based artificial muscle technologies are based around shape

memory alloys (SMAs), which include the well-known Nitinol (a nickel-titanium alloy). SMAs

can be formed into muscle-like devices that actuate with temperature [13]. SMA products are

commercialized and broadly available for muscle applications. An example product is Flexinol

actuator wire, available from Dynalloy, Inc. [9]. Flexinol is a Nitinol variant, capable of up to

7% reversible stroke with a muscle strength that exceeds the yield strength of the alloy at

operating temperature (a Flexinol wire can exert enough force to break itself).

SMAs have convenient features such as intrinsic conductivity, which permits direct

electrothermal heating. Unfortunately, while they can provide fast, high energy strokes, SMAs

are highly hysteretic and therefore difficult to control [5][13]. SMAs are also expensive when

used in large quantities to achieve high-strength actuation: the cost of Flexinol wire actuators

exceeds $700 US per kilogram [8].

Shape Memory Polymers (SMPs) provide similar functionality to SMAs, but at a lower strength,

cost and weight. They are not inherently conductive, so they are harder to heat than Nitinol and

its variants [17]. Fiber reinforcement provides some improvement in SMP strength [17], and

6

researchers showed that performance improved when SMPs were filled with carbon nanotubes

[12].

Another polymer solution uses an electroactive approach, in which dielectric elastomers are

subjected to electric fields [24]. This Electro-active Polymer (EAP) technology does not require

heating for actuation, but necessitates a high voltage [5][24]. Some other electroactive polymers

need to be stimulated chemically or electrochemically, in a wet environment, or are themselves

gels [11]. These technologies have exhibited relatively high efficiencies (~20%), but impose the

additional system load of chemical storage and delivery [11].

Carbon nanotubes (CNTs) can be spun into yarns, which provide torsional and linear actuation

under appropriate conditions [15][20]. These types of actuation can be induced by multiple

stimulation methods, including electrochemical charge injection [15], gas absorption on an

attached layer of palladium and thermal changes [20]. Thermal actuation was achieved by

infiltrating the CNT yarn with a guest such as wax. When made to expand and contract under

changes in temperature (which can be produced using light or electricity), wax-infiltrated yarns

provided lengthwise actuation on the order of 5%, with a unit-mass work capacity up to 29 times

that of a natural muscle [20]. Unfortunately these muscles rely on state-of-the-art carbon

nanotube technology and are therefore expensive [5].

2.3 TWIST-INSERTION POLYMER MUSCLES

Recent work by Haines et al. demonstrated a novel form for a thermo-mechanical artificial

muscle based on low-cost, readily available precursor materials. The seminal work in Science [5]

explained a process of twist insertion into drawn fibers of nylon (and similar materials).

7

When the twisted fibers are heated, they untwist,

producing strong torsional actuation. If these

same fibers are coiled into helical spring-like

strands (as shown in Fig. 3), heating induces

linear contraction along the helix axis. Haines et

al. provided an overview of the characteristics of these actuator strands, and illustrated various

example configurations including parallel linear actuators, braids and textiles. Twist insertion

actuators have a work capacity, relative to mass, over 100 times that of natural human muscle

[5], which is a three-fold improvement over the expensive carbon nanotube technology discussed

above [20]. The coiled fibers exhibited very low hysteresis performance and sustained one

million cycles of operation, but exhibited low maximum energy conversion efficiencies on the

order of 1% [5].

In the original research, electro-thermal actuation was obtained using Joule heating in filaments

pre-coated with conductive material, or by twisting a discrete conductive element into the fiber

during fabrication. Hydro-thermal heating was also achieved by containing muscle fibers within

a fluid-tight tube, which was alternately filled with hot and cold water to cycle the muscle [5]. In

more recent research, fibers were painted with conductive silver paint before coiling. The silver

paint then provided the electrical pathway for Joule heating. These silver-plated filament

actuators cycled more quickly when cooled passively in water [25].

In some of the tests of Haines et al., coiling was induced by continuous twisting of the fiber, to

the point that the fiber began to twist around itself helically (a phenomenon known as writhe). In

other tests, twisted fibers were wrapped around mandrels of various diameters. This produced

Fig. 3: Optical image of coiled nylon
fiber actuator

8

muscles capable of greater actuation distance, but lower load capacity, a geometrically intuitive

result [5].

Twist insertion muscles are extremely easy to manufacture, requiring only a rotating spindle and

a means to keep the coiling fiber under tension. Media coverage of this technology has

highlighted the ease of manufacturing from common fibers such as fishing line and sewing

monofilament, and even encouraged hobbyists to pursue their own applications [6].

2.4 TWIST MECHANICS AND ANISOTROPISM

Haines et al. describe the thermal expansion of drawn polymer fibers, which can be anisotropic

(an important property if mechanical twisting action is required) [5]. Aligned crystalline regions

of polymer samples have negative thermal expansion along the chain direction, due to a

hypothesized change in the rotation of carbon-carbon bonds within the polymer backbone [30].

Drawn fibers that are not entirely crystalline can exhibit a much greater lengthwise contraction

than purely aligned crystalline molecules, because of the contraction of amorphous elastic tie

molecules within the fiber structure [4][3]. These drawn fibers also expand diametrically, due to

the expansion of crystalline regions [25][4]. The result is an anisotropic expansion, with a

negative coefficient in the draw direction and a positive coefficient perpendicular thereto.

Torsional untwisting occurs when twisted polymers that exhibit these anisotropic expansion

conditions are heated. When a fiber is twisted, the polymer chains oriented lengthwise along the

fiber form helices. Shrinking in polymer chains now occurs along these helices. Haines et al.

describe an analogous relationship between original fiber length, twist, axial length and diameter

in the surface layer of a yarn [4]:

Δ𝑛

𝑛
=
Δ𝜆

𝜆

1

cos2 𝛼𝑓
−
Δ𝑑

𝑑
−
Δ𝑙

𝑙
tan2𝛼𝑓 (1)

9

In this expression, 𝑛 is the fiber twist, 𝜆 the polymer chain length, 𝑙 the twisted fiber length, 𝛼𝑓

the angle of the molecular helix formed by twisting, 𝑑 the original fiber diameter, and Δ-

expressions the temperature-induced changes in these quantities. By this analogy, Haines et al.

explained that a change in twist is related to lengthwise fiber contraction and diametric fiber

expansion. As equation (1) illustrates, these two effects combine additively to affect torsional

action. This leads to a useful conjecture: it is advantageous in twist-insertion muscle design to

select precursor fibers with highly anisotropic thermal expansion characteristics, in which a

temperature increase causes the fiber to contract lengthwise and expand diametrically [5][4].

2.5 ACHIEVING LINEAR ACTUATION

The linear actuation achieved by helical fiber configurations is explained by the fiber untwisting

effect described in the previous section. A fiber that has been coiled into a helix will undergo

twisting when the helix is extended and compressed. The magnitude of this twisting is described

by this equation, from Haines et al. [5]:

Δ𝑇 =
𝑁Δ𝐿

𝑙2
 (2)

Where 𝑙 is the length of the original, fiber, Δ𝐿 is the change in length of the helical coil, 𝑁 is the

number of coils and Δ𝑇 is the change in twist per unit length in the original fiber. Equation (2) is

fundamentally a formulation of spring mechanics [5][25][4]; it illustrates that a change in fiber

twist will produce a corresponding, proportional change in helix length. By comparison of the

mechanical work achieved by torsional and linear twist-insertion actuators, Haines et al.

demonstrated empirically that the twist-length relationship of equation (2) is likely to be the

mechanism that drives linear actuation in coiled muscle fibers [5].

10

3 METHODS

3.1 METHOD OF FIBER GENERATION

A simple test and manufacturing fixture was developed to produce and characterize the twist

insertion muscle fibers investigated by Haines et al.

[5]. The twisting fixture comprised a benchtop

twisting stand, a heat gun for muscle stimulation,

and a digital camera for recording tests. The stand

provided a convenient USB serial port user interface,

controlled twist insertion, and a weight hook for

gravitational tension application. Bags of small ball

bearings, measured on scales, served as calibrated

weights. Fig. 4 shows the fiber twisting and test

stand CAD model.

The tabletop test stand was only capable of twisting

short lengths of muscle fiber, and could not twist

muscles quickly. Thus, this fixture was dismantled

for parts midway through the project period, and

replaced by a less formal setup permitting rapid preparation of longer samples. A metal wire

hook was installed in the chuck of a handheld electric drill. Nylon fiber tied to this hook was

weighted to calibrated tensions by the same technique used for short lengths (a metal hook with a

bag of weighted ball bearings). Longer fibers were coiled using existing vertical drops such as

balconies and stairwells. For such large sample lengths, zip ties were attached to the weighted

Fig. 4: Computer-aided
design graphic for muscle
twisting fixture

11

end of the twisting fiber and permitted to ride against a vertical wall or board to prevent

unwinding.

To prevent muscles from uncoiling during transfer between the drill setup and test fixture, two-

ply muscle fibers were produced using the technique detailed by Mirvakili et al. [25], namely

grasping the center of the finished muscle coil

and reducing muscle tension to create a snarl,

which naturally nucleates a two-ply yarn. To

terminate the two ply yarn, a short length of

aluminum tubing was placed over the yarn

product and crimped using pliers at a measured

distance from the end of the fiber (see Fig. 5).

Fig. 5: Crimped aluminum
tube on end of two-ply
muscle

12

3.2 PRELIMINARY CHARACTERIZATIONS

The seminal research [5] illustrated that a wide range of spring indices could be achieved in the

test fiber by nucleating coils at a common load and subsequently changing to a smaller or larger

load, depending on the spring index desired. To reduce the number of variables at play and

simplify the twist insertion process, this research addressed only artificial muscle fibers produced

using a fixed load. Fiber characterization testing began with a series of coiling operations using a

few different fiber diameters and coiling loads, to establish the range of loads that nucleated

suitable coils in different diameter fibers.

Note that only a small selection of precursors was considered during this test, due to limitations

on time for testing. The preliminary tests addressed here were performed on muscles coiled from

2-lb, 12-lb and 20-lb grades of a single example precursor product: Trilene XL Smooth Casting

monofilament fishing line. As noted in the seminal research [5], twisted nylon actuators seem to

exhibit common scale-independent behaviors, so it is reasonable to expect that the effects

observed here will also occur when alternative precursor test ratings are used.

The procedure for static characterization required a very simple setup. A muscle was coiled on

the test rig of Fig. 4 and loaded with a mass of known weight. It was then brought to a high

temperature using a heat gun, and allowed to cool. At each step of heating and cooling, the

temperature of the muscle was verified using a thermocouple, and an image was captured. This

process of cycling was repeated several times, to “train” the muscle. After that point, the muscle

was brought to a series of different temperatures (controlled by manually changing the distance

13

to the heat gun), and images were captures at each step. Finally, the images collected during the

test were analyzed in the program Kinovea1 to determine the length of the fiber at each test point.

Note that the process of cycling the muscle to a high temperature was only added after a failed

attempt at characterization illustrated a “training” effect. Whenever the load changed, cycling to

high temperatures caused permanent deformation that did not reverse during cooling. By

repeatedly cycling the muscle to a high temperature, it was possible to illustrate a condition of

repeatable actuation.

The earliest characterization tests revealed a complex training effect, which prevented a basic

model of muscle behavior from being established. To produce a more model-suggestive dataset,

it was necessary to perform more elaborate series of tests, here dubbed the “detailed

characterization”. Detailed characterization was split into two test sequences, referenced here as

T1 and T2.

The preliminary tests used a heat gun as a heat source, requiring a great deal of user input and

control. The heat gun test rig was extremely slow and provided poor quality data points due to its

lack of precise thermal control. It was determined to be inadequate for detailed characterizations.

To mitigate this problem, various electrical heating systems were explored.

If the muscle was wrapped in a fine resistive wire, and the wire heated by an electric current, the

muscle would theoretically take on the temperature of the wire after a certain period. When

tested practically, however, the hot wire always formed a knife-like cutting edge and sliced

through the muscle. Even a small indentation in the muscle fiber surface would be enough to

nucleate further splitting, so it is reasonable that the hot-wire approach was impractical. A

1 http://www.kinovea.org/

http://www.kinovea.org/

14

similar effect was observed when a multi-fiber conductive thread element was used in place of

the hot wire. While the conductive thread element provided more diffuse heat, it still localized

heating enough to cut through the fiber.

Haines et al. [5] demonstrated a mode of uniform surface-layer heating using pre-plated silver

fibers. Those precursor fibers were not obtained in time for testing. A similar technique of [5]

dictated that the muscle be wrapped in forest-grown carbon nanotube sheet, which formed a

flexible conductive layer. This was similarly impractical within the scope of this project.

Mirvakili et al. [25] demonstrated a technique for reproducing the surface-layer heaters of [5], in

which a conductive silver bearing paint was applied to the muscle surface at some point during

manufacturing. An advantage to this method is the ability to apply the paint at any stage; e.g.

mid-twisting but before supercoiling (the preferred technique in [25]), which theoretically

reduces the amount of flexibility required. The paint used in [25] was SPI Flash-Dry, a very

expensive compound intended for electrically conductive sample mounting. As a less expensive

substitute, a vial of Ted Pella, Inc. Pelco Conductive Silver Paint was obtained.

At first, the muscle was painted during the coiling process, just before supercoiling. The Pelco

paint proved insufficiently flexible, incrementally flaking off the muscle fiber during

supercoiling. Next the paint was experimentally applied after coiling, to the entire muscle coil

structure, using a foam applicator pad. This produced an effective surface heating element, but

that element soon flaked away during muscle operation. At this point, the paint technique was

abandoned due to the high cost of silver paint samples. Further testing used a more complex, but

less expensive, alternative. It is recommended that future experimenters attempt to obtain pre-

plated precursor fibers or the proper SPI Flash-Dry paint compound, in order to reproduce the

heating elements from [5] and/or [25].

15

The low-cost heating alternative comprised a small-

diameter tubular diffuser device. The heater itself

comprised an aluminum tube, wrapped in Kapton tape, and

subsequently in Kanthal heating wire. The selected tube’s

diameter was just large enough to accommodate a test

muscle. Tubes constructed from kitchen-grade aluminum

foil were tested and shown to be effective, but solid

aluminum tubes with a greater wall thickness were stronger

and easier to re-use. This design produced a uniform heated

environment for the muscle, at the cost of high-speed

heating and cooling (the heater tube diffuser introduced a

large amount of extra thermal mass).

In the case of the preliminary tests, the tube was made long

enough to completely contain the sample muscle fiber,

Because the tube obscured the muscle’s length and

prevented direct weight attachment, a wire hanger was produced that fit inside of the tubular

heater. This wire was attached to the end of the sample, and a weight hanger and anti-rotation

moment arm were formed at the other end. Additionally, a circular vision target was affixed to

the hanger, to simplify analysis of test images. An electrical current was applied to the Kanthal

wire to increase the temperature of the muscle tube. An external, manually-controlled fan was

sometimes used during cooling to speed up the tests.

The driver circuit for the heater was an older, single channel version of the circuit developed for

the antagonistic test fixture, which is documented in Section 3.3. The original driver circuit was

Fig. 6: Detail Test Setup

16

destroyed during transportation of the test setup, but the circuit for the antagonistic test fixture

was designed to be compatible with the T1/T2 heater setup. Further documentation for that

circuit is omitted here, as it is thoroughly documented in Section 3.3. Similarly, the computer

program interface for the heater controller (a PI controller with a feedforward component) was

very similar to that for the antagonistic fixture, also documented in Section 3.3. That program is

omitted from this report, as it is merely an early version of the antagonistic fixture program, with

slower logging and only a single channel of control. Note that this project did not use any source

control repository or formal versioning, because the number of software tools developed was so

small.

See Fig. 6 for a photograph of the test setup, and Fig. 7 for a photograph of the tube heater and

hanger system.

Fig. 7: Heater Tube and Hanger System

Detailed test T1 comprised a better controlled, more comprehensive version of the preliminary

muscle test, with the goal of obtaining a constitutive equation accounting for the full regime of

repeatable actuation available from the polymer muscle fiber. T1 did not attempt to characterize

non-repeatable (plastic) phenomena.

17

A sample two-ply muscle was loaded into the heater tube, and a small weight of 275 g was

applied. The heater was then cycled to a high temperature (90°C) and returned to room

temperature (approximately 25°C) five times. After cycling, muscle fiber temperature was swept

through a series of increasing values, and finally returned to room temperature. At this point, the

load on the muscle was increased, and the process repeated.

This was the extent of testing performed in the preliminary phase. For T1, though, additional

data points were collected; after the first batch of data, a series of five additional batches were

collected. The procedures for these batches were identical, but in each new batch, the peak

temperature used during initial cycling was reduced. In an attempt to prevent previous tests from

influencing each new batch, the muscle was cycled five times to 90 degrees at the 275 g load

between batches.

To communicate the basis for test T2, a brief digression into the results of T1 is necessary. T1

demonstrated that muscle actuation could be described using two quantities in superposition, first

an actuation descriptor 𝑐, and second a deformation descriptor 𝑠. The actuation descriptor

appeared to be an instantaneous function of muscle temperature, while the deformation 𝑠

appeared to depend on the muscle’s historical temperature and load parameters. In short, the

parameter 𝑠 accounted for plastic deformation and nonlinear dynamic effects.

Originally, test T2 was intended to produce a thorough characterization of the behavior of

parameter 𝑠 and therefore the hysteretic element of the muscle constitutive model. Unfortunately,

time did not permit such a complete characterization. Instead, a slice of the sample space was

collected using the following regime:

T2.i Cycle to a high temperature at a low load (90°C, 275 g).

T2.ii Cool to a low temperature (25°C, 275 g).

18

T2.iii Change load to a “starting load” parameter (25°C, starting load).

T2.iv Heat to a “starting temperature” parameter (starting temperature, starting load).

T2.v Cool to low temperature (25°C, starting load).

T2.vi Change to “ending load” parameter (25°C, ending load).

T2.vii Heat to “ending temperature” parameter (ending temperature, ending load).

T2.viii Heat to high temperature (90°C, ending load).

T2.ix Change load to low load (90°, 275 g).

T2.x Start over at step T2.ii with a new set of load and temperature parameters; repeat for

various parameter permutations.

These tests were performed at a set of loads (700 g, 850 g, 1000 g, 1150 g) and temperatures

(25°C, 50°C, 70°C, 90°C) in each available permutation of starting load, ending load, starting

temperature, and ending temperature. Accounting for small amounts of data lost due to testing

error, 250 of the available 256 permutations were successfully captured. The structure of these

tests permitted deduction of the behavior of the 𝑠 parameter during heating from room

temperature, after training to many different sets of loads and temperatures.

Because the heating processes in T2 were only performed starting at room temperature, T2 did

not generate a comprehensive constitutive equation for plastic deformation behavior. Complete

tests would need to assess the effect of changing both temperature and load, without returning to

room temperature in between events. Nevertheless, T2 illustrated the degree of plastic

deformation possible during muscle operation within a wide range of temperatures, and was

therefore informative of broad quantitative conclusions about muscle control and application

limitations.

3.3 DESIGN OF ANTAGONISTIC CONFIGURATION

The antagonistic test configuration was designed to permit testing in a realistic use case, where

the muscle under test drives a rotor whose position may be monitored. The configuration needed

a rotor with attachment points at various radii, a stator with adjustable attachment points, and a

19

low-resistance means for monitoring the position

of the rotor. A final feature requirement was added

to simplify the application of torque: a disc of

constant radius from which a weight-bearing cable

can be suspended, attached to the rotor and

concentric with the axis of rotation.

Both springs and muscles could be used as

antagonistic force elements, in various

configurations. The ends of two-ply muscles are easily looped through their own twists to form

tightening loops. Extension springs also include loops for

mounting. Thus, steel pins (as shown in Fig. 8) provided a

convenient connection means for both these forms of stimulus.

These pins could be easily supported by drilled holes, so a

“pegboard” arrangement of mounting holes was included in

the fixture to satisfy the requirement for adjustable mounting

locations.

To measure the position of the rotor, a low friction Vishay

Spectrol potentiometer was purchased. Rigid mounting of the

potentiometer was not acceptable, as even the slightest

misalignment of the shafts would introduce binding. Instead, a

method similar to patent US 2937861 [23] was adapted to the

design. The potentiometer was mounted to a plastic armature.

Fig. 8: Steel Pin with Attached Muscle
and Spring

Fig. 9: Antagonistic Test
Fixture

20

A small extension spring held the armature against a sliding contact surface. The potentiometer’s

shaft was coated in a small quantity of beeswax and pressed into a hole along the rotation axis of

the rotor. As the rotor and potentiometer shaft rotated, the mounting armature provided counter-

rotation torque on the body of the potentiometer, while allowing the potentiometer body to

translate slightly, thereby avoiding a binding condition.

The finished fixture is shown in Fig. 9. For detailed design drawings of the components and

assembly of the antagonistic configuration, see Appendix A.

To heat the muscles installed in the antagonistic fixture, tubular aluminum heaters were

constructed with Kanthal heater wire. The heaters for the antagonistic joint fixture were shorter

than the heater from the preliminary test (described in Section 3.2 and illustrated in Fig. 7) but

otherwise identical in form and function. Because the antagonistic fixture design required the

ends of the muscles to be exposed, the heater tubes were cut short and affixed at one end of the

muscles using Kapton tape. This arrangement allowed the muscle fibers to move in and out of

the heater tubes, complicating the mode of heating but permitting inflexible heater geometry.

The fixture required two computer-interfaced electrical subsystems to operate: a thermal control

system, capable of heating and cooling two muscle heater channels and measuring their

temperatures, and a position measurement system, capable of reading the state of the

potentiometer. To speed up sampling, two independent Arduino serial interface boards were

used, one for temperature control and another for sensor feedback. These interface boards were

loaded with a remote prototyping API downloaded from the web2 and modified for this custom

use. An external computer was programmed in Python to command the boards, using a Python

2 https://github.com/HashNuke/Python-Arduino-Prototyping-API

https://github.com/HashNuke/Python-Arduino-Prototyping-API

21

module provided by the remote prototyping API and modified for this custom use. Note that the

Arduino Prototyping API was used freely under the MIT License.

Temperature measurement was accomplished using an Amprobe TMD-56 thermocouple meter

with two K-type thermocouples. An interpreter program for the USB interface on the TMD-56,

taken from the open source project Artisan on GitHub3, was modified to permit access to the

temperature reading inside Python.

3 https://github.com/artisan-roaster-scope/artisan

Fig. 10: Antagonistic Fixture Connection Diagram

Figure Links:
http://www.vishay.com/docs/57042/157.pdf
https://www.fairchildsemi.com/datasheets/TI/TIP120.pdf

https://github.com/artisan-roaster-scope/artisan
http://www.vishay.com/docs/57042/157.pdf
https://www.fairchildsemi.com/datasheets/TI/TIP120.pdf

22

The schematic for the fixture, including the USB command and file logging architecture, is

shown in Fig. 10. Note that the Arduino board was not powerful enough to drive the muscle

heater. Instead, each channel was connected to a TIP120 Darlington transistor pair, capable of

driving up to 5 A on each channel (for more information, see the datasheet link in Fig. 10). The

12 V power supply was a surplus power brick rated at only 3.35 A, so the TIP 120 was more than

sufficient to switch the heater power. The driver circuitry of Fig. 10 was assembled on a

solderless breadboard, with alligator clip leads for connecting the driver circuit to the muscle

heater assembly.

The test fixture software package comprised the aforementioned modified Arduino Prototyping

API, the interpreter program for the AMPROBE thermocouple meter adapted from the Artisan

project, and a control script called tempTest.py. The source code files for the modified libraries

and the control script can be found in Appendix B. Note that additional simple scripts were also

created, using the same libraries, to facilitate tests without temperature stimuli, and calibration

runs. These scripts are omitted from this report for brevity.

For instructions on the configuration and use of the fixture, see Appendix C.

3.4 ROTARY FIXTURE CHARACTERIZATION

The characterizations of Section 3.2 suggested a potential constitutive model for the muscle

fibers, but did not present a large amount of data for analysis. To create time-domain datasets

suitable for in-silico parameter matching, a series of temperature stimuli were applied to a

muscle in the antagonistic configuration.

To ensure that a useful model of the antagonistic fixture could be developed for parameter

matching, it was necessary to sample the response of the antagonistic fixture to a known

23

stimulus. A reference extension spring was procured for this purpose. The spring was suspended

from a pin and a weight was applied to the spring. A photograph of the spring was captured next

to a scale 2 inches in length. The weight applied to the reference spring was changed, and an

additional photograph was captured. This procedure was repeated for several different weights.

In an image editing program (GIMP4), the lengths of the reference spring and reference length

under various loads were approximated graphically. The measurement was made between the

centers of the circular hooks at each end of the spring; the resulting pixel lengths were then

converted to millimeters by referencing the known length of the scale in the photographs. Finally

the spring lengths measured in the sample images were converted to lengths reflecting the

distance between the centers of the fixture pins, by adding the difference in the measured inner

diameter of the spring loop and the measured outer diameter of the fixture pin. This length data,

along with the known load weight data, was used to generate a plot of the reference spring’s load

response. A linear region of this response curve was selected and subjected to regression; the

result was a linear mathematical model for a certain region of the reference spring’s operation.

Note that the reference spring was assumed to be massless and lossless.

4 https://www.gimp.org/

https://www.gimp.org/

24

The reference spring was attached to the test fixture as shown

in Fig. 11. A test weight was applied and the rotor was

manually cycled between its endstops for calibration. Finally,

the rotor was held manually at the zero position and released,

provoking a damped oscillatory response. This process was

repeated until five valid sample sequences were collected.

The five sample sequences from the reference spring

oscillation test were later used in a parameter matching

exercise to determine antagonist fixture parameters such as

rotational inertia and frictional damping rate.

Muscle response curves were collected on the rotary fixture

by stringing a single two-ply muscle to the fixture, in a

manner similar to the spring configuration shown in Fig. 11.

No spring was connected to the fixture, but a weight was applied as in the reference spring

oscillation test. Initially, the weight was a minimal training mass to provoke the muscle to

become taut.

Using the tubular heater described in Section 3.3, the muscle was repeatedly cycled to

approximately 90°C and then returned to room temperature. Rotor movement was monitored

during this stimulus. Once a roughly repeatable motion was achieved, the cyclic stimulus was

terminated and a larger load weight was applied to the fixture. The muscle temperature was

stepped incrementally (in a staircase pattern) and returned to room temperature. This temperature

sweeping was reiterated until a roughly repeatable motion was achieved. Then, the minimal

training mass was applied and the muscle was again cycled between approximately 90°C and

Fig. 11: Spring Test
Configuration

25

room temperature. This process was repeated for various load weights, with temperature cycling

at the low training mass between each load weight staircase stimulus.

One final data sequence was produced using a different stimulus function. The muscle was reset

using the same low training mass and temperature cycling regime used in the staircase stimulus

test. Then, at a test load, the muscle was heated quickly to approximately 90°C and allowed to

cool to room temperature. This heating cycle was reiterated, producing a rough sawtooth

temperature waveform, until roughly repeatable actuation was observed. Then, at room

temperature, the load mass was increased by pouring a known mass of ball-bearings into the load

vessel, without stopping the test or repeating the training mass cycling regime. The sawtooth

heating and cooling cycle was then repeated until roughly repeatable actuation was observed.

Additional mass was added once more, and the cycle was repeated. The resulting single output

dataset from this test provided a convenient characterization of muscle behavior under changing

load.

3.5 PARAMETRIC MODELING

To develop a mathematical model for the artificial muscles, it was necessary to manually

investigate the results of the preliminary and rotary fixture tests for qualitative behaviors, then

characterize these behaviors’ relationships with temperature and with each other. Each behavior

was separated into a mechanical constitutive linear element (e.g. source, capacitor, dashpot,

mass) to simplify the analysis. The constitutive models for each of these effects were assumed to

be linear, though the effect of temperature on each effect was not always assumed linear. The

conclusions of this process are documented as results in Section 4.2.

26

In addition to the muscle itself, it was also necessary to develop a simple mathematical model of

the rotary antagonistic text fixture. This model assumed simple Newtonian rigid-body response

characteristics, with Coulomb friction in the rotating joint.

After the mathematical model was ready, and the model parameters governing the behavior of

the muscle and joint fixture models were named, the models were imported to Mathworks

Simulink technical simulation software. A few simplifying assumptions were taken during this

process; these assumptions are documented in Section 4.2. Note that, at this point, most of the

model parameters (except physical constants such as gravitational accelerations) were filled with

dummy values.

To determine the muscle-independent parameters of the fixture model, such as damping and

rotational inertia, the reference spring model developed in Section 3.4 was imported into

Simulink and “installed” in the fixture according to the dimensional structure shown in Fig. 11.

The data from the reference spring oscillation tests of Section 3.4 were imported into the

modeling environment, and the Simulink Parameter Estimation tool was executed to match the

response of the simulated fixture to that of the experimental fixture, under reference spring

stimulus. The Parameter Estimation dialog was permitted to vary the damping coefficient and the

rotational inertia estimate; this yielded a close-fitting match between the simulation and the five

real-life test reference spring oscillation test cases.

To determine the muscle parameters, the reference spring model was removed from the

simulation, and the muscle model was “installed” in the fixture according to the dimensional

structure used during rotary muscle testing. The data from the staircase muscle tests of Section

3.4 were then imported into the modeling environment, and the Simulink Parameter Estimation

tool was executed to match the response of the simulated muscle to that of the experimental

27

muscle. This step was computationally intensive, and therefore proceeded slowly. At some

stages, manual adjustments were made in some parameters based on qualitative knowledge of the

model not available to the parametric search algorithm. More details on this process and its

findings are documented in Section 4.2.

3.6 CONTROLS FOR ANTAGONISTIC CONFIGURATION

With a muscle model established, the Simulink test configuration was reorganized to support two

simultaneously simulated muscles acting antagonistically. A simple joule heating model for these

muscles was adopted, and its heating and cooling rates were set based on an ad-hoc empirical

measurement of the fixture’s heating and cooling rates.

The heater stimulus channels in the simulated two-channel joint setup were connected to a virtual

discrete PID (proportional-integral-derivative) controller. Various steps were taken in an attempt

to linearize the system for controls tuning; these steps and their outcomes are documented in

Section 4.4. Finally, a controlled system was produced in-silico (i.e. numerical simulation), and

the response of the system to various inputs and forcing stimuli were recorded.

4 RESULTS

4.1 PRELIMINARY TEST FINDINGS

Preliminary tests comprised mostly ad-hoc procedures on temporary fixtures, plus the detailed

characterizations T1 and T2.

The earliest tests did not produce much useful quantitative information. The preliminary testing

process demonstrated empirically that the selected precursor (20-lb Trilene XL Smooth Casting

nylon fishing fiber) could be coiled into muscle form under a tension of 2.7 N, or 275 grams-

force. This value was selected as the standard coiling load for all subsequent testing.

28

The earliest preliminary tests also revealed several meaningful qualitative muscle properties,

which influenced the design of the detailed tests T1 and T2. The muscles tended to permanently

increase in length when heated under high load, but they returned to their original length if

heated under low load. Furthermore, the muscles exhibited temperature-dependent contraction at

all loads, and the degree of contraction (in percentage-points) did not appear to depend on load.

Based on these findings, the procedures for T1 and T2 were developed to characterize the

repeatable contraction and non-repeatable deformation behaviors of the muscle fibers,

respectively.

T1 yielded data along the axes of temperature, strain, load, and training temperature. Consider

first several plots of strain data with respect to load at different peak training temperatures,

shown in Fig. 12. In these illustrations, the temperature of each reading is indicated by coloring.

29

Fig. 12: T1 Raw Response Plots

30

Note that each of the plots in Fig. 12 describes a consistent contraction during heating, up to an

approximately constant strain limit, at which the muscle cannot get any shorter. It appears that

this contraction’s absolute magnitude is associated with the temperature, independent of the load

on the muscle.

To test this hypothesis, it is possible to strip the resting room temperature positional bias from

each horizontal row of data points in the raw plots of Fig. 12. This is achieved by subtracting the

strain value of the rightmost point (room temperature) in a given constant-load dataset from each

data value within the same dataset. The result is a zero-bias metric indicating the degree of

muscle contraction with respect to room temperature strain, herein named the contraction offset.

Note that this quantity represents percentage points of difference in strain, and not percent

change relative to any position.

The plot of Fig. 13 illustrates the relationship between the contraction offset and temperature, for

all the relevant data points in T1. Each colored line represents a set of data points taken under a

fixed load (horizontal tuples in the raw response plots of Fig. 12). Note the boundary condition

associated with low loads, which causes a set of lines that stray from the primary trend.

31

Fig. 13: T1 Contraction Offset for All Samples

Fig. 14: T1 Contraction Offset w/ Boundary Excluded

32

The plot in Fig. 14 shows the contraction data for all samples from the previous set of plots,

excluding samples taken at 275 g and 475 g loads. It appears that eliminating this region of the

sample space also eliminates the boundary effect shown in Fig. 13. Quadratic regression over the

resulting dataset produces the fit of equation (3).

𝑜𝑓𝑓𝑠𝑒𝑡 = −0.001279548572343𝑡2 + 0.001385427266603𝑡 + 0.846078596331288 (3)

This fit is shown in Fig. 15.

Fig. 15: T1 Contraction Offset Regression

33

As shown in Fig. 13, a boundary condition prevents the muscle from contracting fully in certain

circumstances. In particular, this boundary condition appears to occur when contracting would

cause the muscle’s overall strain to become smaller than a certain value. The final plot in Fig. 12

shows that this effect is not simply a “hard cutoff”; instead, the contraction offset function

changes when the muscle is operating below a strain value of 5%.

The goal of detail testing is to suggest a mathematical model of muscle behavior. To keep this

model simple, further analysis will assume low strain conditions (<5%) can be avoided during

use, by mechanically forcing the muscle under that minimum tensile strain at all times. With this

assumption, and with the newly created regression from Fig. 15, a temporary descriptive model

can be created. This model is shown in equation (4).

𝑐 = −0.00128𝑡2 + 0.00139𝑡 + 0.846

𝜎 = {
𝑠 + 𝑐, 𝑠 + 𝑐 > 5
𝑢𝑛𝑑𝑒𝑓, 𝑠 + 𝑐 < 5

(4)

In this model, 𝜎 is the actual strain in percentage points, 𝑐 is the contraction offset computed in

Fig. 15, and 𝑠 is a quantity named “resting length” which must account for all phenomena not

attributed to thermal muscle actuation. Future linear tests over artificial muscles must resolve the

value of 𝑠, resting length, in various operating conditions. Any data point that is collected will be

useful in this pursuit, because values for 𝑠 can be obtained by solving the equation 𝜎 = 𝑠 + 𝑐.

Note that more information can be gleaned from T1, now that a basic model has been

established. In particular, T1 shows the value of 𝑠 when a muscle is subjected to a fixed load and

taken to a fixed temperature several times, for a variety of loads and temperatures, when starting

from a known state similar to the state of a “virgin” muscle (trained at a high temperature and a

low load). By solving the equation 𝜎 = 𝑠 + 𝑐, values of 𝑠 can be determined in these conditions.

34

Fig. 16 shows a plot of the values of 𝑠 given by T1 data for several different initial heating

temperatures and loads investigated during T1. These values are computed from all valid data

points and not just room temperature cases; this is the reason for the vertical lines at each tested

load (each line illustrates the range of values observed).

Fig. 16: T1 Values of Resting Length s for Various Loads and Initial Training
Temperatures

Fig. 16 reveals that increasing the training load can cause an increase in the resting length, but

increasing the peak training temperature does not necessarily increase resting length. It also

shows that, near high peak training temperatures, the rate of increase of 𝑠 with respect to the load

goes up (in other words, the slope of the 𝑠-load curve increases).

35

Regression over this plot is omitted from this report, because the data points are too localized to

produce useful regression information. Notwithstanding this fact, Fig. 16 illustrates a strong and

conclusive limitation of the polymer artificial muscle technology: the resting length of the

muscle depends strongly upon the current and past values of load and operating temperature,

and this resting length value contributes as much to the overall length of the muscle fiber as the

repeatable contraction effect highlighted by Haines et al. [5] and documented in Fig. 15.

The behavior of the muscle during thermal cycling was not fully captured during this test; there

was not sufficient time to parse and analyze all of these data points. To ensure a proper survey of

performance, a sampling of thermal cycling data was selected for parsing, namely the pulsed

temperature runs before the 675 g and 1075 g load tests at 90°C, 70°C, and 50°C. Fig. 17 shows

all of these selected cycling processes in a single plot. Note that the common “sequence number”

axis in Fig. 17 serves merely to illustrate the order of events; each separate outlined block of

cycling events occurred at a different point in the T1 process.

Fig. 17: T1 Cycling Behavior in Select Cases

36

In each outlined block within Fig. 17, the first sample occurs at room temperature, and the

muscle is repeatedly heated to a higher temperature. Fig. 17 illustrates that the first heat cycle has

the greatest effect on muscle resting length. At low loads or temperatures, this first heat cycle

appears to completely “train” the muscle to its new resting length. At higher loads and

temperatures, specifically the instance in which the 1075 g load is applied and the muscle is

cycled to 90°C, the muscle resting length keeps increasing slightly with each cyclic application

of heat. In other words, the result in Fig. 17 shows that thermal cycling has a much stronger

effect on training during the first training cycle than on subsequent cycles. Only at high loads

and temperatures does a significant cyclic non-repeatability become evident.

Note that, to reduce time requirements, thermal cycling beyond the first training cycle was not

performed during T2, based on the conclusions from the data shown in Fig. 17.

Test T2 attempted to address a high-dimensional field of data, namely the hysteretic response of

the resting muscle length 𝑠, using a reasonably small number of test data points. Unfortunately

time did not permit a sufficiently complex analysis of the sample space of possible muscle

temperature histories. Proper evaluation of muscle hysteresis in a reasonable timeframe would

require the use of an automatic thermomechanical analyzer, which was not available for this test.

Such an investigation may also require interpretation of high-dimensional data, a complex

mathematical problem which falls outside the scope of this project. Because of these

shortcomings, the results of T2 have been determined to be irrelevant for characterizing muscle

response, and are omitted here.

4.2 MODEL FINDINGS

The selected model structure for the rotary fixture (independent of the muscle model) is shown in

Fig. 18.

37

Fig. 18: Antagonistic Test Fixture Equivalent Model (adapted from [28])

The system of Fig. 18 is a simple dynamical rotor, without plane motion. The simple differential

equation representation for this rotor is omitted here, as it is easily input directly to Simulink

using symbolic elements. Note that the friction in the rotor is not assumed to be a linear velocity

damper, and is instead modeled more accurately using an assumed Coulomb friction function.

38

The complicating factors in this model are the non-linear modulated transformer functions

between the muscle/spring stimulus elements and the rotor. These elements possess length and

tension properties, which impose torque functions on the rotor. To compute these torque

functions, vector mathematics must be applied. The known vectors are:

𝐴 = �̂�𝑋𝐴 − 𝑗̂𝑌𝐴

�⃑⃑� = −�̂�𝑋𝐵 − 𝑗̂𝑌𝐵

𝑟𝐴⃑⃑⃑⃑ = �̂�𝑟𝐴 cos 𝜃 + 𝑗̂𝑟𝐴 sin 𝜃

𝑟𝐵⃑⃑ ⃑⃑ = −𝑖̂𝑟𝐵 cos 𝜃 − 𝑗̂𝑟𝐵 sin 𝜃

The vectors of interest, namely the muscle/spring elements, can now be defined in terms of

known quantities. The conclusive vectors are shown in equations (5) and (6); the vector lengths

are shown in equations (7) and (8).

𝑀𝐴⃑⃑ ⃑⃑ ⃑⃑ = 𝐴 − 𝑟𝐴⃑⃑⃑⃑

𝑀𝐵
⃑⃑ ⃑⃑ ⃑⃑ = �⃑⃑� − 𝑟𝐵⃑⃑ ⃑⃑

𝑀𝐴⃑⃑ ⃑⃑ ⃑⃑ = −�̂�𝑟𝐴 cos 𝜃 − 𝑗̂𝑟𝐴 sin 𝜃 + �̂�𝑋𝐴 − 𝑗̂𝑌𝐴 (5)

𝑀𝐵
⃑⃑ ⃑⃑ ⃑⃑ = 𝑖̂𝑟𝐵 cos 𝜃 + 𝑗̂𝑟𝐵 sin 𝜃 − �̂�𝑋𝐵 − 𝑗̂𝑌𝐵 (6)

𝐿𝐴 = |𝑀𝐴⃑⃑ ⃑⃑ ⃑⃑ | = √(𝑋𝐴 − 𝑟𝐴 cos 𝜃)2 + (−𝑌𝐴 − 𝑟𝐴 sin 𝜃)2 (7)

𝐿𝐵 = |𝑀𝐵⃑⃑ ⃑⃑ ⃑⃑ | = √(−𝑋𝐵 + 𝑟𝐵 cos 𝜃)2 + (−𝑌𝐵 + 𝑟𝐵 sin 𝜃)2 (8)

The length of each muscle/spring is now known in terms of the angle 𝜃 of the rotor. The torque

on the rotor due to each muscle/spring element is a function of both rotor position (the

39

modulating factor) and the tensile force in the muscle/spring element, named 𝐹𝐴/𝐵 here. The

conclusive torque quantities are shown as equations (9) and (10).

𝜏𝐴⃑⃑ ⃑⃑ = 𝑟𝐴⃑⃑⃑⃑ × 𝐹𝐴⃑⃑⃑⃑⃑ = ||

�̂� 𝑗̂ �̂�
𝑟𝐴 cos 𝜃 𝑟𝐴 sin 𝜃 0

𝐹𝐴
𝐿𝐴
(𝑋𝐴 − 𝑟𝐴 cos 𝜃)

𝐹𝐴
𝐿𝐴
(−𝑌𝐴 − 𝑟𝐴 sin 𝜃) 0

||

= �̂� (
𝐹𝐴𝑟𝐴
𝐿𝐴

cos 𝜃 (−𝑌𝐴 − 𝑟𝐴 sin 𝜃) −
𝐹𝐴𝑟𝐴
𝐿𝐴

sin 𝜃 (𝑋𝐴 − 𝑟𝐴 cos 𝜃)) (9)

𝜏𝐵⃑⃑⃑⃑⃑ = 𝑟𝐵⃑⃑ ⃑⃑ × 𝐹𝐵⃑⃑⃑⃑⃑ = ||

�̂� 𝑗̂ �̂�
−𝑟𝐵 cos 𝜃 −𝑟𝐵 sin 𝜃 0

𝐹𝐵
𝐿𝐵
(−𝑋𝐵 + 𝑟𝐵 cos 𝜃)

𝐹𝐵
𝐿𝐵
(−𝑌𝐵 + 𝑟𝐵 sin 𝜃) 0

||

= �̂� (−
𝐹𝐵𝑟𝐵
𝐿𝐵

cos 𝜃 (−𝑌𝐵 + 𝑟𝐵 sin 𝜃) +
𝐹𝐵𝑟𝐵
𝐿𝐵

sin 𝜃 (−𝑋𝐵 + 𝑟𝐵 cos 𝜃)) (10)

While both of these expressions are non-linear, they are easily computed by simulation software

and will therefore permit accurate simulation of fixture response without assumptions about the

position of the rotor. Note that the lengths of the muscle/spring elements have also been

computed; these serve as inputs to the constitutive models for the muscles and reference spring

within the simulation. Those constitutive models produce force outputs, which may in turn be

used to compute the torques on the rotor using equations (9) and (10).

Note that the rotary antagonistic fixture was not capable of simultaneously heating an entire

muscle to a consistent temperature; a length of the muscle under test was always resting at room

temperature outside of the heating tube. To account for this effect without increasing model

complexity, the “effective temperature” of the muscle in the simulated model was defined using

a weighted average, as in equation (11):

40

𝑇𝑒𝑓𝑓 =
𝐿ℎ𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑒𝑎𝑡𝑒𝑟 + (𝐿𝑚𝑢𝑠𝑐𝑙𝑒 − 𝐿ℎ𝑒𝑎𝑡𝑒𝑟)𝑇𝑟𝑜𝑜𝑚

𝐿𝑚𝑢𝑠𝑐𝑙𝑒
 (11)

The model for the reference spring was determined empirically and takes the form shown in

equation (12), where 𝐹 is the tensile force in the spring in Newtons, and 𝑥 is the length of the

spring in meters, measured between the two mounting pins on the antagonistic test fixture.

𝐹 = 145.71𝑥 − 5.2097, 𝑥 ≥ 0.04682 (12)

This linear model depicts a lossless capacitive element, which in turn is a good representation for

an extension spring that is not in saturation.

The constitutive model for the muscle itself was the most complicated aspect of the modeling

exercise in this project. Based on the results from Section 4.1, a muscle model structure had to

account for the following observed effects:

1) MODULUS: The muscle exhibits a spring-like behavior, wherein any applied force

generates a proportional deformation strain.

2) HYST: The muscle exhibits a temperature- and load-history-dependent training effect,

wherein the muscle’s “resting length” can be modified by manipulation of temperature

and load.

3) OFFSET: The muscle is prone to contraction when subjected to a temperature increase.

The magnitude of the contraction in terms of absolute distance (percentage points strain)

is a strong function of temperature, and does not depend on muscle load, if the other two

observed effects are ignored. In this sense, the contraction appears in same ways

analogous to the manipulation of the position input of a common series-elastic actuator.

41

The MODULUS effect is the easiest to

model; it is merely a linear spring. The

OFFSET effect is also simple to model,

because this effect appears to occur

independent of the other system effects. Thus

the OFFSET can be modeled as a true

positional offset source, with offset

magnitude a function of temperature,

positioned in series with the MODULUS

element.

The HYST effect is the most difficult to model, but it is common to use damper models for

hysteretic effects. In fact, researchers working with polymer artificial muscles coiled from

conductive thread showed that a damper model accurately described isothermal load-cycling

hysteresis within their muscles (an effect not directly investigated here) [21]. A model based on

this work provides a convenient starting point for this case. A fixed damper model in parallel

with a spring models isothermal hysteresis, but more detail must be added to account for the

muscle’s memory of its resting length. If a damper’s coefficient is negatively dependent upon

temperature, the damper will permit fast deformations at high temperatures, but resist them at

low temperatures, preventing recovery from a deformation achieved at high temperature. This is

an accurate description of the observed muscle behavior. Thus, the HYST effect is modeled

using a linear spring and damper in parallel, with the damper’s coefficient dependent upon

temperature. For simplicity, the temperature dependence of the damper element is assumed

linear.

Fig. 19: Muscle Model

42

The model as described above is illustrated in Fig. 19. Note that this model does not account for

the mass of the muscle, which is assumed to be negligible relative to the masses in the

antagonistic rotary test fixture.

From this point in the analysis, it is convenient to assess response in terms of relative strain. This

strain will be assessed with respect to a “base length”, refined as the minimum length of the

muscle before it has deformed. Strain is denoted in the simulation work associated with this

paper using the character sigma (𝜎); this notation is continued here.

𝜎 =
𝐿 − 𝐿𝑏𝑎𝑠𝑒
𝐿𝑏𝑎𝑠𝑒

And so:

𝐿 = 𝐿𝑏𝑎𝑠𝑒 + 𝜎𝐿𝑏𝑎𝑠𝑒

The most convenient mathematical interpretation of the muscle model will take 𝐿 or 𝜎 as an

input, and produce the resulting tensile force as an output. Certain simplifications are necessary

to accomplish this inversion. First, the springs must be modeled as tensile springs, which can

only produce tensile force, and which cannot actuate below a certain threshold force. To invert

this region of saturation, it is necessary to introduce a slight incline to the otherwise sharp cliff of

saturation. Thus, a very small strain value 𝜖 is selected, and the spring forces follow in equations

(13) and (14):

𝐹𝐾ℎ𝑦𝑠𝑡 =

{

 𝐿𝑏𝑎𝑠𝑒(𝜎ℎ𝑦𝑠𝑡 − 𝜖)𝐾ℎ𝑦𝑠𝑡 + 𝐹ℎ𝑦𝑠𝑡𝑚𝑖𝑛 , 𝜎ℎ𝑦𝑠𝑡 > 𝜖

𝐹ℎ𝑦𝑠𝑡𝑚𝑖𝑛
𝜖

𝜎ℎ𝑦𝑠𝑡 , 0 < 𝜎ℎ𝑦𝑠𝑡 ≤ 𝜖

0, 𝜎ℎ𝑦𝑠𝑡 ≤ 0

 (13)

43

𝐹𝐾𝑚𝑜𝑑𝑢𝑙𝑢𝑠 =

{

 𝐿𝑏𝑎𝑠𝑒(𝜎 − 𝜎𝑜𝑓𝑓𝑠𝑒𝑡 − 𝜎ℎ𝑦𝑠𝑡 − 𝜖)𝐾𝑚𝑜𝑑𝑢𝑙𝑢𝑠 + 𝐹𝑚𝑜𝑑𝑢𝑙𝑢𝑠𝑚𝑖𝑛 , 𝜎 − 𝜎𝑜𝑓𝑓𝑠𝑒𝑡 − 𝜎ℎ𝑦𝑠𝑡 > 𝜖

𝐹𝑚𝑜𝑑𝑢𝑙𝑢𝑠𝑚𝑖𝑛
𝜖

(𝜎 − 𝜎𝑜𝑓𝑓𝑠𝑒𝑡 − 𝜎ℎ𝑦𝑠𝑡), 0 < (𝜎 − 𝜎𝑜𝑓𝑓𝑠𝑒𝑡 − 𝜎ℎ𝑦𝑠𝑡) ≤ 𝜖

0, (𝜎 − 𝜎𝑜𝑓𝑓𝑠𝑒𝑡 − 𝜎ℎ𝑦𝑠𝑡) ≤ 0

 (14)

In equations (13) and (14), the expressions 𝐹ℎ𝑦𝑠𝑡𝑚𝑖𝑛 and 𝐹𝑚𝑜𝑑𝑢𝑙𝑢𝑠𝑚𝑖𝑛 are the minimum forces

required to begin deforming the respective springs. The expression for damping is simple:

𝐹𝐵ℎ𝑦𝑠𝑡 = 𝐵ℎ𝑦𝑠𝑡𝐿𝑏𝑎𝑠𝑒𝜎ℎ𝑦𝑠𝑡̇

The sum of the forces is computed as follows, and yields a final differential equation

representation in equation (15).

𝐹𝐵ℎ𝑦𝑠𝑡 + 𝐹𝐾ℎ𝑦𝑠𝑡 − 𝐹𝐾𝑚𝑜𝑑𝑢𝑙𝑢𝑠 = 0

𝐵ℎ𝑦𝑠𝑡𝐿𝑏𝑎𝑠𝑒𝜎ℎ𝑦𝑠𝑡̇ = 𝐹𝐾𝑚𝑜𝑑𝑢𝑙𝑢𝑠 − 𝐹𝐾ℎ𝑦𝑠𝑡

𝜎ℎ𝑦𝑠𝑡̇ =
𝐹𝐾𝑚𝑜𝑑𝑢𝑙𝑢𝑠 − 𝐹𝐾ℎ𝑦𝑠𝑡

𝐵ℎ𝑦𝑠𝑡𝐿𝑏𝑎𝑠𝑒
 (15)

The value of 𝜎𝑜𝑓𝑓𝑠𝑒𝑡 must be defined. The results from Section 4.1 showed that the offset

element obeys a temperature law, which has been measured empirically. A quadratic relation

appeared to provide a suitable temperature law, so the offset function is defined accordingly in

equation (16):

𝜎𝑜𝑓𝑓𝑠𝑒𝑡 = 𝐴𝑇2 + 𝐵𝑇 + 𝐶 (16)

Note that, for consistency with the rest of the model, the value of 𝜎𝑜𝑓𝑓𝑠𝑒𝑡 was defined to have

units of pure fractional strain, not percentage points. This is a departure from the notation used

in Fig. 15 and related tests.

44

Finally, the relation between temperature and the coefficient of the HYST damping element must

be defined. A linear relation is selected for simplicity, as shown in equation (17):

𝐵ℎ𝑦𝑠𝑡 = 𝐻𝐵ℎ𝑦𝑠𝑡 (𝑇 + 𝑇ℎ𝑦𝑠𝑡𝑜𝑓𝑓𝑠𝑒𝑡) (17)

All of the models documented here were simple enough to ingress into the MATLAB/Simulink

environment. The Simulink model subsystem for the muscle itself is shown in Fig. 20. The

complete subsystem for the fixture, configured with a single muscle, is shown in Fig. 21. Finally,

the test configuration for the entire system (set up for the sawtooth test stimulus) is shown in Fig.

22.

Fig. 20: Simulink Muscle Subsystem

45

Fig. 21: Simulink Joint Subsystem w/ One Muscle

Fig. 22: Complete Simulink Model w/ Experimental Stimulus

4.3 PARAMETER ESTIMATION FINDINGS

Before the parameters of the muscle could be determined, it was necessary to find the values of

the rotor rotational inertia and damping. This was accomplished using the Simulink Parameter

Estimation utility, over the five reference spring oscillation sample sets collected before muscle

testing. Two separate parameter estimations were performed, one using the more accurate

Coulomb damping model, and another using the less accurate but simpler linear damping model.

46

Table 1 shows the results of the reference spring parameter matching exercise.

Table 1: Reference Spring Oscillation Parameter Matching Results

Test Configuration Parameter Value

Coulomb Damping
Inertia J 0.00124103 kg − m2

Damping D 0.00545940 N −m

Linear Damping
Inertia J 0.00131390 kg − m2

Damping D 0.00415667 N −m

The reference spring parameter matching exercise was trivial due to the small number of

parameters under investigation. The muscle parameter matching exercise was much more

computationally intensive and therefore slower. The parameters under analysis were

[𝐹ℎ𝑦𝑠𝑡𝑚𝑖𝑛 , 𝐾ℎ𝑦𝑠𝑡, 𝐹𝑚𝑜𝑑𝑢𝑙𝑢𝑠𝑚𝑖𝑛 , 𝐾𝑚𝑜𝑑𝑢𝑙𝑢𝑠, 𝐻𝐵ℎ𝑦𝑠𝑡 , 𝑇ℎ𝑦𝑠𝑡𝑜𝑓𝑓𝑠𝑒𝑡 , 𝐴, 𝐵, 𝐶]. The 𝐹𝑚𝑜𝑑𝑢𝑙𝑢𝑠𝑚𝑖𝑛 and

𝐾𝑚𝑜𝑑𝑢𝑙𝑢𝑠 parameters could be easily estimated based on the initial resting state of the system, but

the remaining parameters had to be estimated computationally. Three staircase stimulus datasets

with different load weights were selected as the estimation experiments; the data from these tests

were imported into Simulink and a nonlinear parameter estimation exercise was executed (note

that the Coulomb damping model was used for the fixture model in this step). The results of the

estimation exercise are shown in Table 2.

Table 2: Muscle Model Parameter Estimation Results

Parameter Name Value Estimation Technique

𝐴 −1.17832e − 05 1/K2 Computational Search

𝐵 1.40992e − 05 1/K Computational Search

𝐶 0.00881695 Computational Search

𝐹ℎ𝑦𝑠𝑡𝑚𝑖𝑛 1.75489 N Computational Search

𝐾ℎ𝑦𝑠𝑡 415.189
N

m

Computational Search

𝐹𝑚𝑜𝑑𝑢𝑙𝑢𝑠𝑚𝑖𝑛 3.789 N Manual Estimation

𝐾𝑚𝑜𝑑𝑢𝑙𝑢𝑠 186
N

m

Manual Estimation

𝐻𝐵ℎ𝑦𝑠𝑡 −545.907
N − s

m − K

Computational Search

47

𝑇ℎ𝑦𝑠𝑡𝑜𝑓𝑓𝑠𝑒𝑡 −243.380 ℃ Computational Search

The estimation response curves are shown alongside the experimental data curves in Fig. 23, Fig.

24 and Fig. 25. Note that all the data in these three figures were used as reference data in the

parameter estimation exercise.

Fig. 23: 139g Stimulus Experiment Parameter Matching Comparison

48

Fig. 24: 166g Stimulus Experiment Parameter Matching Comparison

Fig. 25: 212g Stimulus Experiment Parameter Matching Comparison

49

Because all the staircase datasets were used in parameter estimation, the sawtooth dataset was

selected as a downstream verification dataset. The output of the simulated system, when

stimulated using the temperature curve from the sawtooth experiment, is shown in Fig. 26.

Fig. 26: Downstream Verification Comparison of Measured and Simulated
Response Datasets for Sawtooth Stimulus Experiment

Note that the downstream verification plot closely follows the general trend of the experimental

plot. The saturation condition (in which the coils of the muscle fiber press up against one

another) was not modeled in the simulated muscle element, and the resulting error in response

can be observed in the first two peaks of Fig. 26. Simulation noise can also be observed in the

first two relaxations of Fig. 26; this noise was caused by overshoot inside the spring saturation

regions of the muscle model. If these two phenomena are ignored, the simulated response

appears to be an accurate reproduction of the real-world system output.

To confirm the above assumptions about the origins of error in Fig. 26, the muscle model and

simulation configuration were augmented using small changes designed to address hypothetical

50

problems. First, a simple model for the saturation condition illustrated by Fig. 26 was introduced

to the augmented muscle model. The condition was modeled as a very rigid spring with

coefficient 𝐾𝜖, only actuating for 𝜎 < 0, as described by equation (18):

𝐹𝜖 = {
𝐾𝜖𝜎, 𝜎 < 0
0, 𝜎 ≥ 0

 (18)

The force 𝐹𝜖 of equation (18) was added to the muscle force, which effectively placed the rigid

saturation spring in parallel with the muscle model. Note that the “slack muscle” condition was

not modeled; it was assumed that the muscle remained taut during the entire test process. The

resulting augmented muscle model is shown in Fig. 27.

Fig. 27: Muscle Model w/ Added Saturation Condition

After the saturation model was added to the simulation, the time resolution of the simulation was

increased, and the parasitic parameters 𝜖 and 𝐾𝜖 were manually adjusted to eliminate the noise

effect. The resulting plot, with saturation added and resolution increased, is shown in Fig. 28 (the

temperature and mass datasets are omitted, as these plots are identical to those shown in Fig. 26).

Fig. 28 confirms that the changes made during augmentation reduced the errors observed in Fig.

51

26, and further confirms that the augmented muscle model is a close analog for the real-world

muscle. Note that while the augmented muscle model is the best model produced thus far, Fig.

28 cannot itself serve as an evaluation metric for the computerized parameter estimation attempt,

because the augmented model was influenced by additional human modeling decisions made in

light of the response to the downstream verification dataset. Fig. 28 simply provides evidence

that the hypothesized sources of error in Fig. 26 were in fact true sources of error.

Fig. 28: Augmented Muscle Model Response to Downstream Verification
Sawtooth Stimulus

A future version of the model might benefit from a non-linear temperature-damper relation, or

even Coulomb-style damping, in the HYST element of the muscle. Such a change could

eliminate unwanted drift in the simulated response at room temperature, which can be observed

near the end of the time series of Fig. 26 and Fig. 28.

52

4.4 CONTROLS FINDINGS

The ultimate goal of this project was to develop an environment for investigating controls for

polymer artificial muscles, and to demonstrate a potential controls model. For simplicity, PI

(proportional-integral) control was selected as the controller type. Simulink conveniently

includes a discrete PI controller block, so the test simulation environment was set up around that

controller block.

For the in-silico controls test, the simulated joint model was updated to include two

antagonistically coupled muscle models, as shown in Fig. 29.

Fig. 29: Antagonistic Simulation Arrangement

Note that this antagonistic model used the simpler, linear model for damping, instead of the non-

linear Coulomb model. The antagonistic model also included the augmented version of the

muscle model, described in Section 4.3.

Heating was simulated using a linear energy flow model, and cooling was simulated according to

Newton’s cooling law. The rate coefficients for each of these models were empirically measured

using a real heater tube, so the simulated heating and cooling rates would match real-world

53

properties for the antagonistic test fixture. While the real fixture used PWM signals to control

heating, the simulated model used a true analog scaling function to emulate PWM. This

simplification allowed the model to run at a lower time-precision. The true scale of the Arduino’s

PWM signal function (0-255) was used as the input scale of the linearized PWM element, to

facilitate easy transfer of the model in-silico to a real-world implementation.

The controller output was limited to one muscle at a time: positive controller output stimulated

one muscle, while negative controller output stimulated the other. The full controller model,

encapsulating the rotary fixture subsystem, is shown in Fig. 30. This figure represents the

culmination of work in this project, as no real-world antagonistic controller testing was

performed.

Fig. 30: In-Silico Antagonistic Controller System

The plant of Fig. 30 could not be linearized automatically by the computer, so a closed-loop

manual linearization was performed using Simulink’s built in PID Tuner Closed Loop Snapshot

Linearization tool. Manual best-guess P and I parameters were selected, and the closed-loop

snapshot was taken near the end of a step-response plot. Simulink’s built-in PID tuner was then

allowed to estimate parameters for a high-speed controller. The step response for the

computationally-tuned controller is shown in Fig. 31.

54

Fig. 31: PI Controller Step Response

The effect of “re-training” in the HYST element of the muscle model provoked concern about

the PI controller’s ability to maintain zero steady-state error during repeated cycling events and

non-constant loads. To test the validity of this concern, various test stimuli were applied to the

in-silico model.

First, a symmetric pulsed input was applied. The response is shown in Fig. 32.

Fig. 32: PI Controller Square Response

55

Next, a step input was applied, and a mass stimulus was applied instantaneously, after a delay

period. The response is shown in Fig. 33. This outcome serves to illustrate the rotary system’s

ability to compensate for changes in applied load.

Fig. 33: PI Controller Mass Step Response

Next, during a normal step response, the mass stimulus was fluctuated using sine wave functions

of increasing frequencies. The resulting response curves are shown in Fig. 34, Fig. 35 and Fig.

36. Note that the system is highly sensitive to external load stimulus, because of the intrinsic

pliability present in the MODULUS element of the muscle model.

56

Fig. 34: PI Controller Response to 0.0318 Hz Sine Mass Stimulus

Fig. 35: PI Controller Response to 0.1592 Hz Sine Mass Stimulus

57

Fig. 36: PI Controller Response to 0.4775 Hz Sine Mass Stimulus

Finally, the mass was set to zero, and the setpoint function was stimulated using sine waves of

various frequencies. The resulting response curves are shown in Fig. 37, Fig. 38 and Fig. 39.

Note that the system is prone to runaway oscillation if the setpoint changes too rapidly, but that

reasonably close tracking is obtained as long as the setpoint stimulus changes slowly.

Fig. 37: PI Controller Response to 0.0318 Hz Sine Setpoint Stimulus

58

Fig. 38: PI Controller Response to 0.1592 Setpoint Stimulus

Fig. 39: PI Controller Response to 0.4775 Hz Sine Setpoint Stimulus

5 DISCUSSION AND CONCLUSIONS

5.1 APPLICATION NOTES

The international patent application [22] referenced in the seminal work [5] lists several potential

applications for the coiled artificial muscles. Proposed applications include pumps and valve

drivers for small-scale or even microscopic equipment, spacecraft solar panel

expansion/alignment, car door lock actuation (and other solenoid applications), peristaltic pumps

59

using sequentially actuated fiber segments, optical device actuators, haptic feedback devices,

porosity control, and various other applications. This section treats a few of those proposed

applications in context of the controls findings from the project.

In brief, this project found that twisted polymer artificial muscles could actuate repeatably under

constant loads, but changed operating region (“resting length”) when subjected to varying loads

during operation. This outcome suggests that applications for the muscles fall into two broad

categories: those that impart unpredictably varying tension on the fiber element, and those that

produce repeatable or constant loading profiles. Instances that require constant loading profiles

are immediate candidates for application of the muscle technology discussed herein, as the

muscles become very easy to model when they do not undergo a change in resting length.

Examples include some valves and pumps, solenoid applications, optical device actuators, and

purely visual event controllers (e.g. facial features on a humanoid robot).

Use cases in which the load profile range is unpredictable, or simply very wide, may still be

candidates for application of twisted polymer muscle technology, but these applications will

require more careful control and may exhibit range-of-motion limitations. Examples of more

challenging applications include haptic feedback, complex manifold control and pumping,

reversible spacecraft solar panel or solar sail expansion, and pure robotics actuation (e.g.

humanoid joint movement). Recent work by Yip and Niemeyer [21] showed that twisted

polymer muscles spun from whole conductive threads (rather than monofilaments) made suitable

actuators for a robotic hand. That research did not investigate or report on in-situ training effects,

which could impact grasping strength or limit muscle range of motion, but the success of a

relatively complex application bodes well for this technology.

60

Note that the applications for twisted polymer muscles are not identical to those applications

previously documented for traditional muscle analogs, though there is some overlap. The

polymer muscles are especially flexible, and very weight-efficient, so they are well suited to

space applications. Because of their low power efficiency, they are poorly suited for traditional

power robotics applications such as dynamic manipulation. Nevertheless, as shown in this

project, these artificial muscles may still find applications in power robotics. Consider a robotic

linkage containing clutches, brakes or dampers at its joints. This kind of element is common if an

armature will be subjected to unknown forces, or simply needs to be back drivable. Twisted

polymer muscles may satisfactorily control the dynamical parameters in those kinds of auxiliary

drive elements, while more traditional actuators execute primary actuation maneuvers.

5.2 FURTHER RESEARCH

Targets for future research include more precise thermal characterizations of muscle properties,

better mathematical modeling, mitigation methods for the “retraining” effect, and faster cooling.

Specifically, future projects should investigate surface-layer or intrinsic heating elements, rather

than using large external heater tubes with unnecessarily high heat capacities. Haines et al. [5]

and Mirvakili et al. [25] have already shown that silver coatings or paints can be used as surface-

layer heating elements. Yip and Niemeyer [21] have demonstrated that this method of heating

still works when muscles are coiled from whole threads (rather than monofilaments). At a

minimum, it is recommended that future experimenters attempt to obtain pre-plated precursor

fibers or the proper SPI Flash-Dry paint compound, in order to reproduce the heating elements

from [5] and/or [25].

61

The major challenge for surface-layer heating is cost, as silver is typically the conductive agent.

A safe, flexible, low cost alternative surface heating agent would be useful to drive down the cost

of high-speed muscles. This is a potential area for future research.

The issue of re-training during loading at temperature remains a controls challenge, though many

applications can avoid this problem by imparting predictable loads on the muscle. Yip and

Niemeyer [21] did not report the re-training effect, but their muscles were constructed from

thread precursors, and treated during “initial training” at a higher peak temperature. It is possible

that one of these changes in precursor or process reduced the muscles’ propensity for complex

hysteretic behavior ([21] reports a fairly straightforward hysteresis loop effect during isothermal

load variation). Further investigation or coordination with those researchers may reveal useful

information.

The geometric means by which the polymer muscles achieve actuation should be transferrable to

other materials with similar molecular structures. Further research into the materials background

for the effects documented herein could reveal a precursor material that yields higher efficiency,

or reduces the re-training effect.

In a push toward testing efficiency, future projects should work to develop more precise, more

automated, non-inertial test fixtures, in which applied force functions are generated using a

control system and not using a hanging weight or spring. This development effort could be

avoided by the acquisition of a thermomechanical analysis machine, but there will always be

some advantages to developing custom test fixtures with the target application in mind.

62

5.3 PROJECT CONCLUSION

The research performed in this project demonstrated that the twisted polymer artificial muscles

of Haines et al. [5] contain useful features, but are also subject to certain mechanical limitations

associated with model complexity. While other researchers have characterized the initial training

of the muscle, no known published work has documented the property of re-training during load

changes at high temperature. This project produced empirical evidence for that effect, and further

documented a simple model with predictive power over the artificial muscle fibers.

The robotic design portion of this project was simple, but it provided the author with an

opportunity to develop a research tool that functioned like a potential application device, namely

the antagonistic muscle fixture. While the fixture was never configured or operated in the full

antagonistic configuration, it was used to collect empirical data that drove in-silico testing, and it

could be easily re-used by a future researcher for similar testing. Design challenges in this

project included test device integration, low-impact mechanical measurement, and unknown

operating parameters of the muscle. The fixture’s construction is extremely strong; it was

designed to accommodate several muscles acting in parallel under high tension. Finite element

analyses for critical parts, while omitted from this report for brevity, are included in the reference

package design files.

In conclusion, the author wishes to thank the countless supporting parties to this work, and to

reiterate that the technology treated herein holds promise for application in the field of soft

robotics, and in a broad range of other technical fields. Twisted polymer artificial muscles are

not without their limitations, but this low-cost, lightweight alternative to more traditional

electromechanical actuators indicates an early step in the right direction for soft robotics

actuation.

63

6 REFERENCES

[1] “agonist muscle.” Taber’s Medical Dictionary. 2015. Retrieved from http://www.tabers.com/tabersonline/view/Tabers-

Dictionary/765961/all/muscle

[2] C. Chou, B. Hannaford, Measurement and Modeliing of McKibben Pneumatic Artificial Muscles. IEEE Trans. Robot.

Auto. 12 (1) 90-102 (1996).

[3] C. L. Choy, F. C. Chen, K. Young, Negative Thermal Expansion in Oriented Crystalline Polymers. Jour. Poly. Sci.

Poly. Phys. Ed. 19 (2), 335-352 (1981).

[4] C. S. Haines et al., Supplementary Materials for Artificial Muscles from Fishing Line and Sewing Thread. Science 343,

868 (2014). Supplementary Materials from Science online.

[5] C.S. Haines et al., Artificial muscles from fishing line and sewing thread. Science 343, 868-872 (2014).

[6] C.S. Haines, How to Make an Artificial Muscle Out of Fishing Line (Science Friday, New York, 2014). Retrieved from
http://www.sciencefriday.com/blogs/03/06/2014/how-to-make-an-artificial-muscle-out-of-fishing-line.html

[7] DARPA, Upgraded Atlas robot to go wireless as the stakes are raised for the DARPA Robotics Challenge finals

(DARPA, Arlington, 2015). Retrieved from http://www.darpa.mil/NewsEvents/Releases/2015/01/20.aspx

[8] Dynalloy, 70°C and 90°C Flexinol® Actuator Wire Price Guide (Dynalloy, Inc., Irvine, 2014). Retrieved from
http://www.dynalloy.com/flexwire_70_90.php

[9] Dynalloy, Technical Characteristics of Flexinol® Actuator Wire (Dynalloy, Inc., Irvine, 2014). Retrieved from

http://www.dynalloy.com/pdfs/TCF1140.pdf

[10] F. Daerden, D. Lefeber, B. Verrelst, R. Van Ham, Pleated pneumatic artificial muscles: actuators for automation and
robotics. Proc. 2011 IEEE/ASME Conf. Adv. Intelligent Mechatronics, Como, Italy (2001).

[11] H. Herr, R. Kornbluh., New horizons for orthotic and prosthetic technology: artificial muscle for ambulation. Proc.

SPIE 5385, Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (2004).

[12] H. Koerner, G. Price, N. A. Pearce, M. Alexander, R. A. Vaia, Remotely actuated polymer nanocomposites–stress-
recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mat. 3 115-120 (2004).

[13] J. Cui et al., Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat.

Mat. 5 286-290 (2006).

[14] J. D. W. Madden et al., Artificial muscle technology: physical principles and naval prospects. IEEE Jour. Ocean. Eng.
29 (3) 706-728 (2004).

[15] J. Foroughi et al. Torsional carbon nanotube artificial muscles. Science 334 494-497 (2011).

[16] J. L. Serres, thesis, Wright State University (2008).

[17] J. Leng, X. Lan, Y. Liu, S. Du, Shape-memory polymers and their composites: stimulus methods and applications.
Prog. Mat. Sci. 56 1077-1135 (2011).

[18] J. Yamaguchi, D. Nishino, A. Takanishi, Realization of dynamic biped walking varying joint stiffness using

antagonistic driven joints. Proc. 1998 IEEE Conf. Rob. Auto., Leuven, Belgium (1998).

[19] K. Hosoda, T. Takuma, A. Nakamoto, S. Hayashi, Biped robot design powered by antagonistic pneumatic actuators for
multi-model locomotion. Robotics and Autonomous Systems 56, 46-53 (2008).

[20] M. D. Lima et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon

nanotube yarn muscles. Science 338 928-932 (2012).

[21] M.C. Yip, G. Niemeyer, High-Performance Robotic Muscles from Conductive Nylon Sewing Thread. Proc. 2015 IEEE
Conf. Rob. Auto., Seattle, Washington (2015).

[22] N. Li, C.S. Haines, M.D. Lima, M.J. de Andrade, S. Fang, J. Oh, M.E. Kozlov, F. Goktepe, O. Oktepe, D. Suh, R.H.

Baughman, “Coiled and non-coiled twisted nanofiber yarn and polymer fiber torsional and tensile actuators,”

International Patent Application PCT/US2013/053227, Feb 6, 2014

[23] R. J. Maring, “Potentiometer mounting,” U.S. Patent 2937861, May 24, 1960.

[24] R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-speed electrically actuated elastomers with strain greater than 100%.

Science 287 836-839 (2000).

64

[25] S. M. Mirvakili et al., Simple and strong: twisted silver painted nylon artificial muscle actuated by Joule heating. Proc.

SPIE 9056, Electroactive Polymer Actuatots and Devices (2014).

[26] Shadow Robot Company, Air Muscle Hand (Shadow Robot Company, London). Image provided by owner and used by

express permission.

[27] Shadow Robot Company, Shadow Dexterous Hand Technical Specification (Shadow Robot Company, London, 2013).

Retrieved from http://www.shadowrobot.com/wp-
content/uploads/shadow_dexterous_hand_technical_specification_E1_20130101.pdf

[28] T. Chaulk, W. D. Hunt, J. Johnson, Dynamic Model of an Artificial Muscle Test Fixture. 2016, C-Term ME/RBE 4322,

Worcester Polytechnic Institute. [Unpublished College Coursework].

[29] Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles – Reality, Potential, and Challenges
(SPIE, Bellingham, ed. 2, 2004).

[30] Y. Kobayashi, A. Keller, The temperature coefficient of the c lattice parameter of polyethylene; an example of thermal

shrinkage along the chain direction. Polymer 11 (2), 114-117 (1970).

65

APPENDIX A ANTAGONISTIC STIMULUS FIXTURE DESIGN DOCUMENTS

The following pages contain mechanical specification drawings for the antagonistic figure. These

drawings provide reference and replication information for the fixture provided to the Soft Robotics

Laboratory at WPI.

66

67

68

69

70

71

72

73

74

75

76

APPENDIX B ANTAGONISTIC STIMULUS FIXTURE SOFTWARE

This appendix lists the primary source code files necessary for the operation of the antagonistic test

fixture. Note that additional simple scripts were also created, using the same libraries, to facilitate tests

without temperature stimuli, and calibration runs. An older, single channel version of the antagonistic

test script was also used for tubular heater control. These ancillary scripts are omitted from this report

for brevity, but all test scripts from this project are in custody of the WPI Soft Robotics Laboratory, c/o

Prof. Cagdas Onal. As noted previously, this project did not use any source control repository or formal

versioning, because the number of software tools developed was so small.

Source and license information is provided for each program, under its header. All *.ino programs are

intended to execute on the Arduino Duemilanove or Uno board, and all *.py programs and modules are

designed to execute under Python 2.7.10 32-bit.

License Text – MIT License (See notes about granular application)
NOTE: THIS LICENSE NOTICE APPLIES GRANULARLY TO THE FILES

arduino.py

prototype/prototype.ino

AND NOT TO ANY OTHER FILES IN THIS MQP, INCLUDING THE PROJECT REPORT IN WHICH COPIES OF THE LICENSED

FILES HAVE BEEN EMBEDDED

Copyright (c) 2009-2010 Akash Manohar J <akash@akash.im>

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

Arduino Interface Program – prototype/prototype.ino
#ifndef SERIAL_RATE

#define SERIAL_RATE 115200

#endif

#ifndef SERIAL_TIMEOUT

#define SERIAL_TIMEOUT 5

77

#endif

void setup() {

 Serial.begin(SERIAL_RATE);

 Serial.setTimeout(SERIAL_TIMEOUT);

}

void loop() {

 int pin = 0;

 switch (readData()) {

 case 0 :

 //set digital low

 //set digital high

 pin = readData();

 pinMode(pin, OUTPUT);

 digitalWrite(pin, LOW); break;

 case 1 :

 //set digital high

 pin = readData();

 pinMode(pin, OUTPUT);

 digitalWrite(pin, HIGH); break;

 case 2 :

 //get digital value

 Serial.println(digitalRead(readData())); break;

 case 3 :

 // set analog value

 pin = readData();

 pinMode(pin, OUTPUT);

 analogWrite(pin, readData()); break;

 case 4 :

 //read analog value

 Serial.println(analogRead(readData())); break;

 case 99:

 //just dummy to cancel the current read, needed to prevent lock

 //when the PC side dropped the "w" that we sent

 break;

 }

}

char readData() {

 Serial.println("w");

 while(1) {

 if(Serial.available() > 0) {

 return Serial.parseInt();

 }

 }

}

Arduino Prototyping Interface Script – arduino.py
#!/usr/bin/env python

-*- coding: utf-8 -*-

import serial

import time

class Arduino(object):

 def __init__(self, port, baudrate=115200):

 self.serial = serial.Serial(port, baudrate, timeout=1)

 self.serial.write(b'99')

 def __str__(self):

 return "Arduino is on port %s at %d baudrate" %(self.serial.port, self.serial.baudrate)

 def setLow(self, pin):

 self.__sendData('0')

 self.__sendData(pin)

 return True

78

 def setHigh(self, pin):

 self.__sendData('1')

 self.__sendData(pin)

 return True

 def getState(self, pin):

 self.__sendData('2')

 self.__sendData(pin)

 return self.__formatPinState(self.__getData()[0])

 def analogWrite(self, pin, value):

 self.__sendData('3')

 self.__sendData(pin)

 self.__sendData(int(value))

 return True

 def analogRead(self, pin):

 self.__sendData('4')

 self.__sendData(pin)

 return self.__getData()

 def __sendData(self, serial_data):

 while(self.__getData()[0] != "w"):

 pass

 serial_data = str(serial_data).encode('utf-8')

 self.serial.write(serial_data)

 def __getData(self):

 input_string = self.serial.readline()

 if input_string is None:

 return "\n"

 else:

 input_string = input_string.decode('utf-8')

 return input_string.rstrip('\n')

 def __formatPinState(self, pinValue):

 if pinValue == '1':

 return True

 else:

 return False

 def close(self):

 self.serial.close()

 return True

AMPROBE TMD-56 Interface Module Script – amprobe.py (See notes about granular license

application)
This source is based on code from the artisan-roaster-scope project at https://github.com/artisan-

roaster-scope/artisan

The artisan-roaster-scope project is licensed under GPL v3. To comply with the terms of that license,

GPL v3 applies granularly

to this file. Note that the GPL v3 does not apply to the other files in the Polymer Muscle MQP

project, INCLUDING THE PROJECT REPORT IN WHICH COPIES OF THE LICENSED FILES HAVE BEEN EMBEDDED, unless

otherwise specified.

This program provides an interface to the Amprobe TMD-56 thermocouple meter T1 and T2 in Python

REQUIREMENTS

python

pyserial

import serial

import time

import binascii

from threading import Thread, Lock

class AmprobeMeter:

79

 __stableT1 = 0

 __stableT2 = 0

 port = ''

 __thread = None

 __lock = None

 def __init__(self, port):

 self.port = port

 self.__lock = Lock()

 self.__thread = Thread(target=self.__readMeter)

 self.__thread.daemon = 1

 self.__thread.start()

 def getTemperatures(self):

 with self.__lock:

 return self.__stableT1, self.__stableT2

 def __readMeter(self):

 while(self.__thread.isAlive()):

 try:

 ser = serial.Serial(self.port, baudrate=19200, bytesize=8, parity='E', stopbits=1,

timeout=1)

 command = "#0A0000NA2\r\n"

 ser.write(command)

 r = ser.read(14)

 ser.close()

 #convert to binary to hex string

 s1 = binascii.hexlify(r[5] + r[6])

 s2 = binascii.hexlify(r[10]+ r[11])

 #we convert the strings to integers. Divide by 10.0 (decimal position)

 t1 = int(s1,16)/10.

 t2 = int(s2,16)/10.

 with self.__lock:

 self.__stableT1 = t1

 self.__stableT2 = t2

 except serial.SerialException, e:

 print e

Temperature Control, Test and Logging Script – tempTest.py
import amprobe

import time

import datetime

import arduino

from threading import Thread, Lock

class TempController:

 __arduinoA = None

 __arduinoB = None

 __meter = None

 __pinA = 0

 __pinB = 0

 __thread = None

 __outputThread = None

 __prevUpdateTime = 0

 __period = 0

 __mainThreadLock = None

 __outputThreadLock = None

 __enabled = 0

 __currentOutputA = 0

 __currentOutputB = 0

 __setpointA = 0

 __setpointB = 0

 __kC = 0

 __kF = 0

 __kP = 0

80

 __kI = 0

 __ILimit = 0

 __accumulatorA = 0

 __accumulatorB = 0

 __prevUnstableTimeA = 0

 __prevUnstableTimeB = 0

 __tempStableA = 0

 __tempStableB = 0

 __controlScale = 0.55

 __temperatureUpdate = 0

 __currentTemperatureA = 0

 __currentTemperatureB = 0

 __prevTemperatureA = 0

 __prevTemperatureB = 0

 __temperatureSteadyTime = 10

 __tempThresh = 1.0

 def __init__(self, arduinoAPort, arduinoBPort, amprobePort, temperaturePinA, temperaturePinB,

updatePeriod,\

 kC, kF, kP, kI, accumLimit, logFileName):

 self.__arduinoA = arduino.Arduino(arduinoAPort)

 self.__arduinoB = arduino.Arduino(arduinoBPort)

 time.sleep(1)

 self.__meter = amprobe.AmprobeMeter(amprobePort)

 self.__pinA = temperaturePinA

 self.__pinB = temperaturePinB

 self.__period = updatePeriod

 self.__prevUpdateTimeA = time.time()

 self.__prevUpdateTimeB = self.__prevUpdateTimeA

 self.__prevUnstableTimeA = self.__prevUpdateTimeA

 self.__prevUnstableTimeB = self.__prevUpdateTimeB

 self.__kC = kC

 self.__kF = kF

 self.__kP = kP

 self.__kI = kI

 self.__ILimit = accumLimit

 self.__logFile = open(logFileName, 'w')

 self.__mainThreadLock = Lock()

 self.__mainThread = Thread(target=self.__updateController)

 self.__mainThread.daemon = 1

 self.__mainThread.start()

 self.__outputThreadLock = Lock()

 self.__outputThread = Thread(target=self.__writeToOutput)

 self.__outputThread.daemon = 1

 self.__outputThread.start()

 def setEnabled(self, enabled):

 with self.__mainThreadLock:

 self.__enabled = enabled

 # turn on LED if controller is enabled

 # turn off LED and heater if controller is disabled

 if enabled:

 header="Time (s), Temperature A (C), Setpoint A (C), Temperature Stable A, Temperature B

(C), Setpoint B (C), Temperature Stable B, Temperature Update, Potentiometer Reading"

 print header

 self.__logFile.write(header + '\n')

 self.__arduinoA.setHigh(13)

 else:

 time.sleep(0.5)

 self.__arduinoA.setLow(13)

 with self.__outputThreadLock:

 self.__arduinoB.analogWrite(self.__pinA, 0)

 self.__arduinoB.analogWrite(self.__pinB, 0)

 def setSetpoint(self, setpointA, setpointB):

81

 with self.__mainThreadLock:

 self.__temperatureUpdate = 1

 self.__setpointA = setpointA

 self.__setpointB = setpointB

 self.__tempStable = 0

 def stableTemperatureA(self):

 with self.__mainThreadLock:

 return self.__tempStableA

 def stableTemperatureB(self):

 with self.__mainThreadLock:

 return self.__tempStableB

 def __updateController(self):

 while self.__mainThread.isAlive():

 currentTime = time.time()

 if currentTime - self.__prevUpdateTime >= self.__period:

 self.__prevUpdateTime = currentTime

 # update temperature

 # get thread-safe copies

 with self.__mainThreadLock:

 self.__prevTemperatureA = self.__currentTemperatureA

 self.__prevTemperatureB = self.__currentTemperatureB

 self.__currentTemperatureA = self.__meter.getTemperatures()[0]

 self.__currentTemperatureB = self.__meter.getTemperatures()[1]

 if self.__currentTemperatureA > self.__setpointA + self.__tempThresh or

self.__currentTemperatureA < self.__setpointA - self.__tempThresh:

 self.__prevUnstableTimeA = currentTime

 if self.__currentTemperatureB > self.__setpointB + self.__tempThresh or

self.__currentTemperatureB < self.__setpointB - self.__tempThresh:

 self.__prevUnstableTimeB = currentTime

 self.__tempStableA = (currentTime - self.__prevUnstableTimeA) >

self.__temperatureSteadyTime

 self.__tempStableB = True# Channel B is disabled (currentTime -

self.__prevUnstableTimeB) > self.__temperatureSteadyTime

 localEnabled = self.__enabled

 localSetpointA = self.__setpointA

 localStableA = self.__tempStableA

 localSetpointB = self.__setpointB

 localStableB = self.__tempStableB

 localTemperatureUpdate = self.__temperatureUpdate

 self.__temperatureUpdate = 0

 if localEnabled:

 errorA = localSetpointA - self.__currentTemperatureA

 errorB = localSetpointB - self.__currentTemperatureB

 # compute integral state

 self.__accumulatorA += errorA * (currentTime - self.__prevUpdateTime)

 if self.__accumulatorA > self.__ILimit:

 self.__accumulatorA = self.__ILimit

 elif self.__accumulatorA < -self.__ILimit:

 self.__accumulatorA = -self.__ILimit

 self.__accumulatorB += errorB * (currentTime - self.__prevUpdateTime)

 if self.__accumulatorB > self.__ILimit:

 self.__accumulatorB = self.__ILimit

 elif self.__accumulatorB < -self.__ILimit:

 self.__accumulatorB = -self.__ILimit

 # compute output

82

 outputA = self.__controlScale*(self.__kC + self.__kF*localSetpointA +

self.__kP*errorA + self.__kI*self.__accumulatorA)

 if outputA>255:

 outputA = 255

 elif outputA<0:

 outputA = 0

 outputB = self.__controlScale*(self.__kC + self.__kF*localSetpointB +

self.__kP*errorB + self.__kI*self.__accumulatorB)

 if outputB>255:

 outputB = 255

 elif outputB<0:

 outputB = 0

 with self.__mainThreadLock:

 self.__currentOutputA = outputA

 self.__currentOutputB = outputB

 position = self.__arduinoA.analogRead(0)

 logString = str(currentTime) + "," + str(self.__currentTemperatureA) + "," +

str(localSetpointA) + "," + str(localStableA) + "," + str(self.__currentTemperatureB) + "," +

str(localSetpointB) + "," + str(localStableB) + "," + str(localTemperatureUpdate)+ "," + position

 print logString

 self.__logFile.write(logString)

 def __writeToOutput(self):

 while self.__outputThread.isAlive():

 with self.__mainThreadLock:

 outputA = self.__currentOutputA

 outputB = 0# Channel B is disabled self.__currentOutputB

 with self.__outputThreadLock:

 self.__arduinoB.analogWrite(self.__pinA, self.__currentOutputA)

 self.__arduinoB.analogWrite(self.__pinB, self.__currentOutputB)

 time.sleep(0.1)

List temperature setpoints here

Both channel lists must specify the same number of temperature setpoints

temperaturesA = [25,90,25,90]

temperaturesB = [25,90,25,90]

try:

 time.sleep(1)

 filename = raw_input("Enter a log file name: ")

 timeInterval = 0.03

 controller = TempController("COM4", "COM6", "COM8", 6, 5, timeInterval, kC=-55.4, kF=1.5, kP=30,

kI=timeInterval*25.0, accumLimit=500, logFileName = "Log - " + datetime.datetime.today().strftime("%a

%d-%m-%Y %H-%M-%S") + " - " + filename)

 controller.setEnabled(1)

 for i in range(len(temperaturesA)):

 controller.setSetpoint(temperaturesA[i],temperaturesB[i])

 while not (controller.stableTemperatureA() and controller.stableTemperatureB()):

 time.sleep(0.1)

 raw_input()

 print "Stopping test...\n\n"

 controller.setEnabled(0)

 print "Controller disabled.\n\n"

except KeyboardInterrupt:

 print "Stopping test...\n\n"

 controller.setEnabled(0)

 print "Controller disabled.\n\n"

83

APPENDIX C ANTAGONISTIC STIMULUS FIXTURE OPERATING INSTRUCTIONS

Operating the antagonistic test fixture is straightforward. Fig. 10 (in section 3.3) shows the proper

electrical and data-line configuration for the fixture. If an existing test script is to be used, that script will

generally need to be modified slightly to suit the test at hand. For example, the names of COM ports and

the lists of temperature set points may need to be changed. The scripts provided with the fixture are all

very simple utility programs less than 500 lines. Detailed documentation of test script design is omitted,

as it is assumed that any user of the fixture is well-versed in Python programming.

These instructions assumed that the user has already configured or custom-designed a test script for their

intended use of the fixture, and now seeks to execute a physical test using the fixture proper.

The antagonistic test fixture may be configured in a purely antagonistic arrangement (two muscles

antagonizing each other, with an optional spring or weight bias), a “dummy” antagonistic arrangement

(one muscle fighting a spring or weight bias), or a purely dynamical arrangement (a combination of

springs and weights that includes no muscle fibers).

The purely dynamical arrangement is convenient for fixture calibration, and requires no muscle setup.

Springs may be strung between fixturing pins, or bolted to the fixture body as convenient. Bias weights

may be suspended from the plastic torque application disk using string or monofilament. A tie-off point

of the suspension element has been included in the design of the torque application disk for this purpose.

 When a bias weight of more than a few grams is applied, it is necessary to clamp the fixture to a solid

work surface to prevent tipping. A DeWALT brand sliding clamp has been included with the fixture for

this purpose; the clamp’s wide mouth permits various modes of fixturing as convenient.

The processes for setting up the purely antagonistic arrangement and dummy antagonistic arrangement

are identical. The bias weight or springs may be affixed to the fixture just as in the purely dynamical

84

arrangement, but a defined procedure must be followed in order to properly affix the muscles to the

fixture:

1. Insert a fixture pin (STATOR ROD in Appendix A) into the selected muscle mounting hole on

either stator plate.

2. Slide a heater tube onto the sample two-ply muscle fiber.

3. Grasp the exposed bottom end (without the aluminum crimp) of the two-ply muscle fiber in two

locations. Twist the fiber in a direction opposite the direction of ply. This will cause the ply to

unwind temporarily, creating a gap between two singleton muscle fibers.

4. Insert the end of the fixture pin into the gap formed in the muscle, then allow the muscle to relax.

At this point, the heater tube should be captured between the crimped end of the muscle fiber and

the bulge created by the infiltrating fixture pin.

5. Gently draw the pin along the muscle’s length until it rests at one end of the muscle, adjacent to

the terminal loop of fiber. Center the pin on the fixture body, inserting it into the second stator

plate. At this point, the position of the muscle on the fixture pin may be adjusted if necessary.

6. Allow the muscle to relax torsionally, then obtain a dummy fixture pin (any unused STATOR

ROD or ROTOR ROD will do).

7. Insert the dummy fixture pin into the dangling end of the muscle using the same method just

applied with the stator pin, and gently draw it to the end of the fiber (adjacent to the metal

crimp).

8. Obtain a fixture pin for the rotor (ROTOR ROD in Appendix A), and insert it into the selected

muscle mounting hole on the rotor.

9. Rotate the dummy pin (which remains inserted in the dangling end of the muscle) until there is

no torsional strain in the muscle fiber.

85

10. Align the end of the dummy pin with the rotor fixture pin. In most cases, the dummy pin will not

come to rest perfectly in parallel with the fixture pin axis. Rotate the dummy pin the minimum

amount necessary to align it closely with the fixture pin, then slide the muscle off the dummy pin

and onto the rotor fixture pin. The goal is to transfer the muscle from the dummy pin to the

fixture pin with minimal introduction of twist.

The steps above may be applied for an arbitrary number of muscles. Multiple muscles may be strung to

the same fixture pin(s), and multiple sets of fixture pins may be installed in the fixture as dictated by the

test.

