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Abstract 

Functional artificial muscle fibers could reduce the cost, weight and complexity of many robotic 

systems, and are therefore an attractive development goal in robotics engineering. When coiled 

into flexible helical artificial muscle fibers, Nylon monofilaments produce linear tensile 

actuation under thermal stimulus. In this research the behavior of these coiled muscle fibers was 

investigated using a test fixture designed to emulate the conditions in a real application. Tests 

showed muscle performance consistent with past research, but also revealed a previously 

undocumented thermal effect wherein muscles changed length unexpectedly under variable-

loading conditions at high temperatures. This effect, along with other known properties of the 

muscle fibers, was modeled in a parametric simulation environment, and parameter estimation 

utilities were used to quantitatively match the model to the real-world response. The matched 

parameter model was used to simulate a computer controlled antagonistic servo-joint, which 

illustrated the potential of the muscle fibers for real-world application, and the controls 

challenges introduced by the newly discovered thermal effect. 
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1  INTRODUCTION 

1.1 BASIS FOR THIS RESEARCH 

There are a number of robotic applications for low-cost muscle-like actuators, especially in 

rapidly developing fields such as humanoid control, active prosthetic design and wearable textile 

devices [5]. Artificial muscle technologies could lead to an era of dramatically increased human-

robot interaction and integration, wherein humans receive replacement artificial muscle implants, 

and robots become just as nimble and dexterous as their human designers [29]. 

Haines et al. have demonstrated a novel approach for synthesizing artificial muscle-like actuator 

fibers from commercially available, low-cost polymer fibers such as fishing line by twist 

insertion. These fibers exhibit contraction of up to 49%, with considerable load capacity and very 

low hysteresis. They offer cost, simplicity, weight and strength advantages over a number of 

existing technologies. In particular, they possess a high strength-to-weight ratio, making them 

potentially valuable in aerospace applications. Several example configurations for the application 

of these fibers have already been demonstrated, including textile-woven, braided, plied and 

bundled actuators, driven electro- and hydro-thermally [5]. 

This project investigates robotic design applications and limitations for the polymer muscle 

fibers of Haines et al. in research and development phases. First, elements of muscle fiber 

production are reproduced. Next, a prototype actuator configuration is developed, and used to 

perform an assay of non-repeatable elements in muscle actuation, and the resulting limitations on 

muscle control. Finally, a controlled model for a 1-DOF rotational robotic joint (based upon the 

prototype actuator configuration) is produced in-silico. The dynamical characteristics of this 

simulated joint are documented, and potential applications are discussed. 
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1.2 CONTRIBUTIONS TO THE FIELD 

This project attempts to recreate the helical muscle fibers of Haines et al., characterize some of 

their behavioral properties, and demonstrate a prototype antagonistic rotary actuator 

configuration in-silico, using Joule heating and passive cooling. The end result and primary 

robotic design component of this project is a rotational joint fixture that can be driven by 

antagonistically biased (prestrained) muscle fibers, and which may be used by a future project 

group to implement the simulated joint from this project. This joint illustrates the applicability of 

twist-insertion fiber actuators to controlled robots, and reveals the limitations of the actuators. As 

such, this work also provides an outline for future research in soft robotic actuation systems, 

especially those that require high work capacity, including aerospace, micro- and nano-robots, 

and ultra-low-cost systems. 

2 BACKGROUND 

2.1 MUSCLE APPLICATIONS IN ROBOTICS 

Many robotics applications require control of the position and/or dynamical characteristics of a 

mechanism. There is widespread interest in a category of actuators that behave similarly to 

natural muscle fibers, affording positional, force and/or impedance control while maintaining a 

flexible, lightweight form factor. Artificial muscle technologies are an attractive solution to 

challenging robotics problems, especially in robots such as humanoids, manipulators and 

prostheses [5]. Artificial muscles may also be useful in aerospace, as they provide a light-weight 

alternative to existing transducer technology. Contrary to traditional cost- and weight-expensive 

geared motors, artificial muscle systems have the potential to be both physically and 

operationally flexible, and customizable for a wide range of applications [29]. 
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Pneumatic muscle systems are already known to be well suited for complicated open-chain 

robots [10]; these systems have been used in various robots including humanoid walking systems 

[19] and dexterous graspers [27]. Force application contexts that preclude more traditional 

actuators due to weight, noise or cost are good potential applications for pneumatic muscles. For 

example, Serres [16] showed an application for pneumatic muscles in human resistive strength 

training under orbital microgravity.  

Natural muscles operate in antagonistic pairs or groups, which afford precise control of 

movement [1]. Human motion is dependent upon the dynamical characteristics of these muscle 

groups. Modern walking prostheses seek to 

emulate the properties of natural limbs, 

which can dynamically adjust mechanical 

joint impedance properties [11]. While 

existing systems such as hysteresis brakes 

and series elastic actuators allow this type of 

control, these technologies can be 

cumbersome and expensive. Artificial 

muscle systems may solve this problem in a 

more compact, comfortable package [11]. 

Developers of walking and humanoid robots 

have attempted to emulate the dynamical 

properties of natural muscle groups [18].  

Artificial muscles are likely to improve the 

realism of these bio-mimetic designs, 

Fig. 1: Atlas, a modern humanoid robot, 
image credit WPI via DARPA [25] 
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because these actuators typically operate in antagonistic groups [10]. Complicated movements 

such as walking have already been achieved using this approach [19]. 

Artificial muscles have been applied in non-traditional applications. Madden et al. [14] provided 

case studies detailing naval-specific muscle applications for controlling the shape and orientation 

of propeller blades. An example variable-camber propeller was proposed for the Expendable, 

Mobile Antisubmarine Warfare Training Target (EMATT) vehicle, and some existing artificial 

muscle technologies were shown to be feasible actuation systems for this design [14]. Because of 

their light weight, artificial muscles could also be valuable in aerospace systems. 

2.2 PAST WORK IN ARTIFICIAL MUSCLES 

Artificial muscle research has spanned various technologies, many of which are based around 

specialized materials. In some cases, esoteric alloys, polymers and gels have been shown to 

exhibit muscle-like behavior. In other cases, more conventional materials and technologies have 

been formed into macroscopic structure that create the desired behavior. Artificial muscle 

research draws heavily on the findings of materials science and nanotechnology scholars. 

Perhaps the most conventional and well-known artificial muscle technology is the pneumatic or 

McKibben air muscle [2]. A pneumatic muscle is constructed by containing an airtight, flexible 

tube or bladder within a braided, non-

extensible fiber shell. When the bladder is 

inflated, the shell converts the inflating 

pressure into a compressive or tensile 

force along the length of the muscle, 

resulting in displacement and/or force 

Fig. 2: Robotic hand using air muscles, 
image credit Shadow Robot Company 
[26] 
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application. These actuators are strong and light, but (like other fluidic actuators) they require 

pressure and valve systems [2]. 

As noted above, pneumatic muscles have seen significant adoption [10][19][27][16]. One 

application, a dexterous hand from the Shadow Robot Company, is shown in Fig. 2 [26]. 

Existing applications for pneumatic muscles may benefit from the introduction of more advanced 

muscle-like actuators that do not require fluidic control overhead. 

Relatively common material-based artificial muscle technologies are based around shape 

memory alloys (SMAs), which include the well-known Nitinol (a nickel-titanium alloy). SMAs 

can be formed into muscle-like devices that actuate with temperature [13]. SMA products are 

commercialized and broadly available for muscle applications. An example product is Flexinol 

actuator wire, available from Dynalloy, Inc. [9]. Flexinol is a Nitinol variant, capable of up to 

7% reversible stroke with a muscle strength that exceeds the yield strength of the alloy at 

operating temperature (a Flexinol wire can exert enough force to break itself).  

SMAs have convenient features such as intrinsic conductivity, which permits direct 

electrothermal heating. Unfortunately, while they can provide fast, high energy strokes, SMAs 

are highly hysteretic and therefore difficult to control [5][13]. SMAs are also expensive when 

used in large quantities to achieve high-strength actuation: the cost of Flexinol wire actuators 

exceeds $700 US per kilogram [8]. 

Shape Memory Polymers (SMPs) provide similar functionality to SMAs, but at a lower strength, 

cost and weight. They are not inherently conductive, so they are harder to heat than Nitinol and 

its variants [17]. Fiber reinforcement provides some improvement in SMP strength [17], and 



 

6 

 

researchers showed that performance improved when SMPs were filled with carbon nanotubes 

[12]. 

Another polymer solution uses an electroactive approach, in which dielectric elastomers are 

subjected to electric fields [24]. This Electro-active Polymer (EAP) technology does not require 

heating for actuation, but necessitates a high voltage [5][24]. Some other electroactive polymers 

need to be stimulated chemically or electrochemically, in a wet environment, or are themselves 

gels [11]. These technologies have exhibited relatively high efficiencies (~20%), but impose the 

additional system load of chemical storage and delivery [11]. 

Carbon nanotubes (CNTs) can be spun into yarns, which provide torsional and linear actuation 

under appropriate conditions [15][20]. These types of actuation can be induced by multiple 

stimulation methods, including electrochemical charge injection [15], gas absorption on an 

attached layer of palladium and thermal changes [20]. Thermal actuation was achieved by 

infiltrating the CNT yarn with a guest such as wax. When made to expand and contract under 

changes in temperature (which can be produced using light or electricity), wax-infiltrated yarns 

provided lengthwise actuation on the order of 5%, with a unit-mass work capacity up to 29 times 

that of a natural muscle [20]. Unfortunately these muscles rely on state-of-the-art carbon 

nanotube technology and are therefore expensive [5]. 

2.3 TWIST-INSERTION POLYMER MUSCLES 

Recent work by Haines et al. demonstrated a novel form for a thermo-mechanical artificial 

muscle based on low-cost, readily available precursor materials. The seminal work in Science [5] 

explained a process of twist insertion into drawn fibers of nylon (and similar materials).  
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When the twisted fibers are heated, they untwist, 

producing strong torsional actuation. If these 

same fibers are coiled into helical spring-like 

strands (as shown in Fig. 3), heating induces 

linear contraction along the helix axis. Haines et 

al. provided an overview of the characteristics of these actuator strands, and illustrated various 

example configurations including parallel linear actuators, braids and textiles. Twist insertion 

actuators have a work capacity, relative to mass, over 100 times that of natural human muscle 

[5], which is a three-fold improvement over the expensive carbon nanotube technology discussed 

above [20]. The coiled fibers exhibited very low hysteresis performance and sustained one 

million cycles of operation, but exhibited low maximum energy conversion efficiencies on the 

order of 1% [5]. 

In the original research, electro-thermal actuation was obtained using Joule heating in filaments 

pre-coated with conductive material, or by twisting a discrete conductive element into the fiber 

during fabrication. Hydro-thermal heating was also achieved by containing muscle fibers within 

a fluid-tight tube, which was alternately filled with hot and cold water to cycle the muscle [5]. In 

more recent research, fibers were painted with conductive silver paint before coiling. The silver 

paint then provided the electrical pathway for Joule heating. These silver-plated filament 

actuators cycled more quickly when cooled passively in water [25]. 

In some of the tests of Haines et al., coiling was induced by continuous twisting of the fiber, to 

the point that the fiber began to twist around itself helically (a phenomenon known as writhe). In 

other tests, twisted fibers were wrapped around mandrels of various diameters. This produced 

Fig. 3: Optical image of coiled nylon 
fiber actuator 



 

8 

 

muscles capable of greater actuation distance, but lower load capacity, a geometrically intuitive 

result [5]. 

Twist insertion muscles are extremely easy to manufacture, requiring only a rotating spindle and 

a means to keep the coiling fiber under tension. Media coverage of this technology has 

highlighted the ease of manufacturing from common fibers such as fishing line and sewing 

monofilament, and even encouraged hobbyists to pursue their own applications [6]. 

2.4 TWIST MECHANICS AND ANISOTROPISM 

Haines et al. describe the thermal expansion of drawn polymer fibers, which can be anisotropic 

(an important property if mechanical twisting action is required) [5]. Aligned crystalline regions 

of polymer samples have negative thermal expansion along the chain direction, due to a 

hypothesized change in the rotation of carbon-carbon bonds within the polymer backbone [30]. 

Drawn fibers that are not entirely crystalline can exhibit a much greater lengthwise contraction 

than purely aligned crystalline molecules, because of the contraction of amorphous elastic tie 

molecules within the fiber structure [4][3]. These drawn fibers also expand diametrically, due to 

the expansion of crystalline regions [25][4]. The result is an anisotropic expansion, with a 

negative coefficient in the draw direction and a positive coefficient perpendicular thereto. 

Torsional untwisting occurs when twisted polymers that exhibit these anisotropic expansion 

conditions are heated. When a fiber is twisted, the polymer chains oriented lengthwise along the 

fiber form helices. Shrinking in polymer chains now occurs along these helices. Haines et al. 

describe an analogous relationship between original fiber length, twist, axial length and diameter 

in the surface layer of a yarn [4]: 

Δ𝑛

𝑛
=
Δ𝜆

𝜆

1

cos2 𝛼𝑓
−
Δ𝑑

𝑑
−
Δ𝑙

𝑙
tan2𝛼𝑓  (1) 
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In this expression, 𝑛 is the fiber twist, 𝜆 the polymer chain length, 𝑙 the twisted fiber length, 𝛼𝑓 

the angle of the molecular helix formed by twisting, 𝑑 the original fiber diameter, and Δ-

expressions the temperature-induced changes in these quantities. By this analogy, Haines et al. 

explained that a change in twist is related to lengthwise fiber contraction and diametric fiber 

expansion. As equation (1) illustrates, these two effects combine additively to affect torsional 

action. This leads to a useful conjecture: it is advantageous in twist-insertion muscle design to 

select precursor fibers with highly anisotropic thermal expansion characteristics, in which a 

temperature increase causes the fiber to contract lengthwise and expand diametrically [5][4]. 

2.5 ACHIEVING LINEAR ACTUATION 

The linear actuation achieved by helical fiber configurations is explained by the fiber untwisting 

effect described in the previous section. A fiber that has been coiled into a helix will undergo 

twisting when the helix is extended and compressed. The magnitude of this twisting is described 

by this equation, from Haines et al. [5]: 

Δ𝑇 =
𝑁Δ𝐿

𝑙2
  (2) 

Where 𝑙 is the length of the original, fiber, Δ𝐿 is the change in length of the helical coil, 𝑁 is the 

number of coils and Δ𝑇 is the change in twist per unit length in the original fiber. Equation (2) is 

fundamentally a formulation of spring mechanics [5][25][4]; it illustrates that a change in fiber 

twist will produce a corresponding, proportional change in helix length. By comparison of the 

mechanical work achieved by torsional and linear twist-insertion actuators, Haines et al. 

demonstrated empirically that the twist-length relationship of equation (2) is likely to be the 

mechanism that drives linear actuation in coiled muscle fibers [5]. 
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3 METHODS 

3.1 METHOD OF FIBER GENERATION 

A simple test and manufacturing fixture was developed to produce and characterize the twist 

insertion muscle fibers investigated by Haines et al. 

[5]. The twisting fixture comprised a benchtop 

twisting stand, a heat gun for muscle stimulation, 

and a digital camera for recording tests. The stand 

provided a convenient USB serial port user interface, 

controlled twist insertion, and a weight hook for 

gravitational tension application. Bags of small ball 

bearings, measured on scales, served as calibrated 

weights. Fig. 4 shows the fiber twisting and test 

stand CAD model. 

The tabletop test stand was only capable of twisting 

short lengths of muscle fiber, and could not twist 

muscles quickly. Thus, this fixture was dismantled 

for parts midway through the project period, and 

replaced by a less formal setup permitting rapid preparation of longer samples. A metal wire 

hook was installed in the chuck of a handheld electric drill. Nylon fiber tied to this hook was 

weighted to calibrated tensions by the same technique used for short lengths (a metal hook with a 

bag of weighted ball bearings). Longer fibers were coiled using existing vertical drops such as 

balconies and stairwells. For such large sample lengths, zip ties were attached to the weighted 

Fig. 4: Computer-aided 
design graphic for muscle 
twisting fixture 
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end of the twisting fiber and permitted to ride against a vertical wall or board to prevent 

unwinding. 

To prevent muscles from uncoiling during transfer between the drill setup and test fixture, two-

ply muscle fibers were produced using the technique detailed by Mirvakili et al. [25], namely 

grasping the center of the finished muscle coil 

and reducing muscle tension to create a snarl, 

which naturally nucleates a two-ply yarn. To 

terminate the two ply yarn, a short length of 

aluminum tubing was placed over the yarn 

product and crimped using pliers at a measured 

distance from the end of the fiber (see Fig. 5). 

  

Fig. 5: Crimped aluminum 
tube on end of two-ply 
muscle 
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3.2 PRELIMINARY CHARACTERIZATIONS 

The seminal research [5] illustrated that a wide range of spring indices could be achieved in the 

test fiber by nucleating coils at a common load and subsequently changing to a smaller or larger 

load, depending on the spring index desired. To reduce the number of variables at play and 

simplify the twist insertion process, this research addressed only artificial muscle fibers produced 

using a fixed load. Fiber characterization testing began with a series of coiling operations using a 

few different fiber diameters and coiling loads, to establish the range of loads that nucleated 

suitable coils in different diameter fibers. 

Note that only a small selection of precursors was considered during this test, due to limitations 

on time for testing. The preliminary tests addressed here were performed on muscles coiled from 

2-lb, 12-lb and 20-lb grades of a single example precursor product: Trilene XL Smooth Casting 

monofilament fishing line. As noted in the seminal research [5], twisted nylon actuators seem to 

exhibit common scale-independent behaviors, so it is reasonable to expect that the effects 

observed here will also occur when alternative precursor test ratings are used. 

The procedure for static characterization required a very simple setup. A muscle was coiled on 

the test rig of Fig. 4 and loaded with a mass of known weight. It was then brought to a high 

temperature using a heat gun, and allowed to cool. At each step of heating and cooling, the 

temperature of the muscle was verified using a thermocouple, and an image was captured. This 

process of cycling was repeated several times, to “train” the muscle. After that point, the muscle 

was brought to a series of different temperatures (controlled by manually changing the distance 
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to the heat gun), and images were captures at each step. Finally, the images collected during the 

test were analyzed in the program Kinovea1 to determine the length of the fiber at each test point. 

Note that the process of cycling the muscle to a high temperature was only added after a failed 

attempt at characterization illustrated a “training” effect. Whenever the load changed, cycling to 

high temperatures caused permanent deformation that did not reverse during cooling. By 

repeatedly cycling the muscle to a high temperature, it was possible to illustrate a condition of 

repeatable actuation. 

The earliest characterization tests revealed a complex training effect, which prevented a basic 

model of muscle behavior from being established. To produce a more model-suggestive dataset, 

it was necessary to perform more elaborate series of tests, here dubbed the “detailed 

characterization”. Detailed characterization was split into two test sequences, referenced here as 

T1 and T2. 

The preliminary tests used a heat gun as a heat source, requiring a great deal of user input and 

control. The heat gun test rig was extremely slow and provided poor quality data points due to its 

lack of precise thermal control. It was determined to be inadequate for detailed characterizations. 

To mitigate this problem, various electrical heating systems were explored. 

If the muscle was wrapped in a fine resistive wire, and the wire heated by an electric current, the 

muscle would theoretically take on the temperature of the wire after a certain period. When 

tested practically, however, the hot wire always formed a knife-like cutting edge and sliced 

through the muscle. Even a small indentation in the muscle fiber surface would be enough to 

nucleate further splitting, so it is reasonable that the hot-wire approach was impractical. A 

                                                 
1 http://www.kinovea.org/ 

http://www.kinovea.org/
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similar effect was observed when a multi-fiber conductive thread element was used in place of 

the hot wire. While the conductive thread element provided more diffuse heat, it still localized 

heating enough to cut through the fiber. 

Haines et al. [5] demonstrated a mode of uniform surface-layer heating using pre-plated silver 

fibers. Those precursor fibers were not obtained in time for testing. A similar technique of [5] 

dictated that the muscle be wrapped in forest-grown carbon nanotube sheet, which formed a 

flexible conductive layer. This was similarly impractical within the scope of this project. 

Mirvakili et al. [25] demonstrated a technique for reproducing the surface-layer heaters of [5], in 

which a conductive silver bearing paint was applied to the muscle surface at some point during 

manufacturing. An advantage to this method is the ability to apply the paint at any stage; e.g. 

mid-twisting but before supercoiling (the preferred technique in [25]), which theoretically 

reduces the amount of flexibility required. The paint used in [25] was SPI Flash-Dry, a very 

expensive compound intended for electrically conductive sample mounting. As a less expensive 

substitute, a vial of Ted Pella, Inc. Pelco Conductive Silver Paint was obtained. 

At first, the muscle was painted during the coiling process, just before supercoiling. The Pelco 

paint proved insufficiently flexible, incrementally flaking off the muscle fiber during 

supercoiling. Next the paint was experimentally applied after coiling, to the entire muscle coil 

structure, using a foam applicator pad. This produced an effective surface heating element, but 

that element soon flaked away during muscle operation. At this point, the paint technique was 

abandoned due to the high cost of silver paint samples. Further testing used a more complex, but 

less expensive, alternative. It is recommended that future experimenters attempt to obtain pre-

plated precursor fibers or the proper SPI Flash-Dry paint compound, in order to reproduce the 

heating elements from [5] and/or [25]. 
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The low-cost heating alternative comprised a small-

diameter tubular diffuser device. The heater itself 

comprised an aluminum tube, wrapped in Kapton tape, and 

subsequently in Kanthal heating wire. The selected tube’s 

diameter was just large enough to accommodate a test 

muscle. Tubes constructed from kitchen-grade aluminum 

foil were tested and shown to be effective, but solid 

aluminum tubes with a greater wall thickness were stronger 

and easier to re-use. This design produced a uniform heated 

environment for the muscle, at the cost of high-speed 

heating and cooling (the heater tube diffuser introduced a 

large amount of extra thermal mass). 

In the case of the preliminary tests, the tube was made long 

enough to completely contain the sample muscle fiber, 

Because the tube obscured the muscle’s length and 

prevented direct weight attachment, a wire hanger was produced that fit inside of the tubular 

heater. This wire was attached to the end of the sample, and a weight hanger and anti-rotation 

moment arm were formed at the other end. Additionally, a circular vision target was affixed to 

the hanger, to simplify analysis of test images. An electrical current was applied to the Kanthal 

wire to increase the temperature of the muscle tube. An external, manually-controlled fan was 

sometimes used during cooling to speed up the tests. 

The driver circuit for the heater was an older, single channel version of the circuit developed for 

the antagonistic test fixture, which is documented in Section 3.3. The original driver circuit was 

Fig. 6: Detail Test Setup 
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destroyed during transportation of the test setup, but the circuit for the antagonistic test fixture 

was designed to be compatible with the T1/T2 heater setup. Further documentation for that 

circuit is omitted here, as it is thoroughly documented in Section 3.3. Similarly, the computer 

program interface for the heater controller (a PI controller with a feedforward component) was 

very similar to that for the antagonistic fixture, also documented in Section 3.3. That program is 

omitted from this report, as it is merely an early version of the antagonistic fixture program, with 

slower logging and only a single channel of control. Note that this project did not use any source 

control repository or formal versioning, because the number of software tools developed was so 

small. 

See Fig. 6 for a photograph of the test setup, and Fig. 7 for a photograph of the tube heater and 

hanger system. 

 

Fig. 7: Heater Tube and Hanger System 

Detailed test T1 comprised a better controlled, more comprehensive version of the preliminary 

muscle test, with the goal of obtaining a constitutive equation accounting for the full regime of 

repeatable actuation available from the polymer muscle fiber. T1 did not attempt to characterize 

non-repeatable (plastic) phenomena. 
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A sample two-ply muscle was loaded into the heater tube, and a small weight of 275 g was 

applied. The heater was then cycled to a high temperature (90°C) and returned to room 

temperature (approximately 25°C) five times. After cycling, muscle fiber temperature was swept 

through a series of increasing values, and finally returned to room temperature. At this point, the 

load on the muscle was increased, and the process repeated. 

This was the extent of testing performed in the preliminary phase. For T1, though, additional 

data points were collected; after the first batch of data, a series of five additional batches were 

collected. The procedures for these batches were identical, but in each new batch, the peak 

temperature used during initial cycling was reduced. In an attempt to prevent previous tests from 

influencing each new batch, the muscle was cycled five times to 90 degrees at the 275 g load 

between batches. 

To communicate the basis for test T2, a brief digression into the results of T1 is necessary. T1 

demonstrated that muscle actuation could be described using two quantities in superposition, first 

an actuation descriptor 𝑐, and second a deformation descriptor 𝑠. The actuation descriptor 

appeared to be an instantaneous function of muscle temperature, while the deformation 𝑠 

appeared to depend on the muscle’s historical temperature and load parameters. In short, the 

parameter 𝑠 accounted for plastic deformation and nonlinear dynamic effects.  

Originally, test T2 was intended to produce a thorough characterization of the behavior of 

parameter 𝑠 and therefore the hysteretic element of the muscle constitutive model. Unfortunately, 

time did not permit such a complete characterization. Instead, a slice of the sample space was 

collected using the following regime: 

T2.i Cycle to a high temperature at a low load (90°C, 275 g). 

T2.ii Cool to a low temperature (25°C, 275 g). 
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T2.iii Change load to a “starting load” parameter (25°C, starting load). 

T2.iv Heat to a “starting temperature” parameter (starting temperature, starting load). 

T2.v Cool to low temperature (25°C, starting load). 

T2.vi Change to “ending load” parameter (25°C, ending load). 

T2.vii Heat to “ending temperature” parameter (ending temperature, ending load). 

T2.viii Heat to high temperature (90°C, ending load). 

T2.ix Change load to low load (90°, 275 g). 

T2.x Start over at step T2.ii with a new set of load and temperature parameters; repeat for 

various parameter permutations. 

These tests were performed at a set of loads (700 g, 850 g, 1000 g, 1150 g) and temperatures 

(25°C, 50°C, 70°C, 90°C) in each available permutation of starting load, ending load, starting 

temperature, and ending temperature. Accounting for small amounts of data lost due to testing 

error, 250 of the available 256 permutations were successfully captured. The structure of these 

tests permitted deduction of the behavior of the 𝑠 parameter during heating from room 

temperature, after training to many different sets of loads and temperatures. 

Because the heating processes in T2 were only performed starting at room temperature, T2 did 

not generate a comprehensive constitutive equation for plastic deformation behavior. Complete 

tests would need to assess the effect of changing both temperature and load, without returning to 

room temperature in between events. Nevertheless, T2 illustrated the degree of plastic 

deformation possible during muscle operation within a wide range of temperatures, and was 

therefore informative of broad quantitative conclusions about muscle control and application 

limitations. 

3.3 DESIGN OF ANTAGONISTIC CONFIGURATION 

The antagonistic test configuration was designed to permit testing in a realistic use case, where 

the muscle under test drives a rotor whose position may be monitored. The configuration needed 

a rotor with attachment points at various radii, a stator with adjustable attachment points, and a 
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low-resistance means for monitoring the position 

of the rotor. A final feature requirement was added 

to simplify the application of torque: a disc of 

constant radius from which a weight-bearing cable 

can be suspended, attached to the rotor and 

concentric with the axis of rotation. 

Both springs and muscles could be used as 

antagonistic force elements, in various 

configurations. The ends of two-ply muscles are easily looped through their own twists to form 

tightening loops. Extension springs also include loops for 

mounting. Thus, steel pins (as shown in Fig. 8) provided a 

convenient connection means for both these forms of stimulus. 

These pins could be easily supported by drilled holes, so a 

“pegboard” arrangement of mounting holes was included in 

the fixture to satisfy the requirement for adjustable mounting 

locations. 

To measure the position of the rotor, a low friction Vishay 

Spectrol potentiometer was purchased. Rigid mounting of the 

potentiometer was not acceptable, as even the slightest 

misalignment of the shafts would introduce binding. Instead, a 

method similar to patent US 2937861 [23] was adapted to the 

design. The potentiometer was mounted to a plastic armature. 

Fig. 8: Steel Pin with Attached Muscle 
and Spring 

Fig. 9: Antagonistic Test 
Fixture 
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A small extension spring held the armature against a sliding contact surface. The potentiometer’s 

shaft was coated in a small quantity of beeswax and pressed into a hole along the rotation axis of 

the rotor. As the rotor and potentiometer shaft rotated, the mounting armature provided counter-

rotation torque on the body of the potentiometer, while allowing the potentiometer body to 

translate slightly, thereby avoiding a binding condition.  

The finished fixture is shown in Fig. 9. For detailed design drawings of the components and 

assembly of the antagonistic configuration, see Appendix A. 

To heat the muscles installed in the antagonistic fixture, tubular aluminum heaters were 

constructed with Kanthal heater wire. The heaters for the antagonistic joint fixture were shorter 

than the heater from the preliminary test (described in Section 3.2 and illustrated in Fig. 7) but 

otherwise identical in form and function. Because the antagonistic fixture design required the 

ends of the muscles to be exposed, the heater tubes were cut short and affixed at one end of the 

muscles using Kapton tape. This arrangement allowed the muscle fibers to move in and out of 

the heater tubes, complicating the mode of heating but permitting inflexible heater geometry. 

The fixture required two computer-interfaced electrical subsystems to operate: a thermal control 

system, capable of heating and cooling two muscle heater channels and measuring their 

temperatures, and a position measurement system, capable of reading the state of the 

potentiometer. To speed up sampling, two independent Arduino serial interface boards were 

used, one for temperature control and another for sensor feedback. These interface boards were 

loaded with a remote prototyping API downloaded from the web2 and modified for this custom 

use. An external computer was programmed in Python to command the boards, using a Python 

                                                 
2 https://github.com/HashNuke/Python-Arduino-Prototyping-API 

https://github.com/HashNuke/Python-Arduino-Prototyping-API
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module provided by the remote prototyping API and modified for this custom use. Note that the 

Arduino Prototyping API was used freely under the MIT License. 

Temperature measurement was accomplished using an Amprobe TMD-56 thermocouple meter 

with two K-type thermocouples. An interpreter program for the USB interface on the TMD-56, 

taken from the open source project Artisan on GitHub3, was modified to permit access to the 

temperature reading inside Python. 

 

                                                 
3 https://github.com/artisan-roaster-scope/artisan 

Fig. 10: Antagonistic Fixture Connection Diagram 

Figure Links: 
http://www.vishay.com/docs/57042/157.pdf 
https://www.fairchildsemi.com/datasheets/TI/TIP120.pdf 
 

https://github.com/artisan-roaster-scope/artisan
http://www.vishay.com/docs/57042/157.pdf
https://www.fairchildsemi.com/datasheets/TI/TIP120.pdf
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The schematic for the fixture, including the USB command and file logging architecture, is 

shown in Fig. 10. Note that the Arduino board was not powerful enough to drive the muscle 

heater. Instead, each channel was connected to a TIP120 Darlington transistor pair, capable of 

driving up to 5 A on each channel (for more information, see the datasheet link in Fig. 10). The 

12 V power supply was a surplus power brick rated at only 3.35 A, so the TIP 120 was more than 

sufficient to switch the heater power. The driver circuitry of Fig. 10 was assembled on a 

solderless breadboard, with alligator clip leads for connecting the driver circuit to the muscle 

heater assembly. 

The test fixture software package comprised the aforementioned modified Arduino Prototyping 

API, the interpreter program for the AMPROBE thermocouple meter adapted from the Artisan 

project, and a control script called tempTest.py. The source code files for the modified libraries 

and the control script can be found in Appendix B. Note that additional simple scripts were also 

created, using the same libraries, to facilitate tests without temperature stimuli, and calibration 

runs. These scripts are omitted from this report for brevity. 

For instructions on the configuration and use of the fixture, see Appendix C. 

3.4 ROTARY FIXTURE CHARACTERIZATION 

The characterizations of Section 3.2 suggested a potential constitutive model for the muscle 

fibers, but did not present a large amount of data for analysis. To create time-domain datasets 

suitable for in-silico parameter matching, a series of temperature stimuli were applied to a 

muscle in the antagonistic configuration. 

To ensure that a useful model of the antagonistic fixture could be developed for parameter 

matching, it was necessary to sample the response of the antagonistic fixture to a known 
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stimulus. A reference extension spring was procured for this purpose. The spring was suspended 

from a pin and a weight was applied to the spring. A photograph of the spring was captured next 

to a scale 2 inches in length. The weight applied to the reference spring was changed, and an 

additional photograph was captured. This procedure was repeated for several different weights. 

In an image editing program (GIMP4), the lengths of the reference spring and reference length 

under various loads were approximated graphically. The measurement was made between the 

centers of the circular hooks at each end of the spring; the resulting pixel lengths were then 

converted to millimeters by referencing the known length of the scale in the photographs. Finally 

the spring lengths measured in the sample images were converted to lengths reflecting the 

distance between the centers of the fixture pins, by adding the difference in the measured inner 

diameter of the spring loop and the measured outer diameter of the fixture pin. This length data, 

along with the known load weight data, was used to generate a plot of the reference spring’s load 

response. A linear region of this response curve was selected and subjected to regression; the 

result was a linear mathematical model for a certain region of the reference spring’s operation. 

Note that the reference spring was assumed to be massless and lossless. 

                                                 
4 https://www.gimp.org/ 

https://www.gimp.org/
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The reference spring was attached to the test fixture as shown 

in Fig. 11. A test weight was applied and the rotor was 

manually cycled between its endstops for calibration. Finally, 

the rotor was held manually at the zero position and released, 

provoking a damped oscillatory response. This process was 

repeated until five valid sample sequences were collected. 

The five sample sequences from the reference spring 

oscillation test were later used in a parameter matching 

exercise to determine antagonist fixture parameters such as 

rotational inertia and frictional damping rate. 

Muscle response curves were collected on the rotary fixture 

by stringing a single two-ply muscle to the fixture, in a 

manner similar to the spring configuration shown in Fig. 11. 

No spring was connected to the fixture, but a weight was applied as in the reference spring 

oscillation test. Initially, the weight was a minimal training mass to provoke the muscle to 

become taut. 

Using the tubular heater described in Section 3.3, the muscle was repeatedly cycled to 

approximately 90°C and then returned to room temperature. Rotor movement was monitored 

during this stimulus. Once a roughly repeatable motion was achieved, the cyclic stimulus was 

terminated and a larger load weight was applied to the fixture. The muscle temperature was 

stepped incrementally (in a staircase pattern) and returned to room temperature. This temperature 

sweeping was reiterated until a roughly repeatable motion was achieved. Then, the minimal 

training mass was applied and the muscle was again cycled between approximately 90°C and 

Fig. 11: Spring Test 
Configuration 
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room temperature. This process was repeated for various load weights, with temperature cycling 

at the low training mass between each load weight staircase stimulus. 

One final data sequence was produced using a different stimulus function. The muscle was reset 

using the same low training mass and temperature cycling regime used in the staircase stimulus 

test. Then, at a test load, the muscle was heated quickly to approximately 90°C and allowed to 

cool to room temperature. This heating cycle was reiterated, producing a rough sawtooth 

temperature waveform, until roughly repeatable actuation was observed. Then, at room 

temperature, the load mass was increased by pouring a known mass of ball-bearings into the load 

vessel, without stopping the test or repeating the training mass cycling regime. The sawtooth 

heating and cooling cycle was then repeated until roughly repeatable actuation was observed. 

Additional mass was added once more, and the cycle was repeated. The resulting single output 

dataset from this test provided a convenient characterization of muscle behavior under changing 

load. 

3.5 PARAMETRIC MODELING 

To develop a mathematical model for the artificial muscles, it was necessary to manually 

investigate the results of the preliminary and rotary fixture tests for qualitative behaviors, then 

characterize these behaviors’ relationships with temperature and with each other. Each behavior 

was separated into a mechanical constitutive linear element (e.g. source, capacitor, dashpot, 

mass) to simplify the analysis. The constitutive models for each of these effects were assumed to 

be linear, though the effect of temperature on each effect was not always assumed linear. The 

conclusions of this process are documented as results in Section 4.2. 
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In addition to the muscle itself, it was also necessary to develop a simple mathematical model of 

the rotary antagonistic text fixture. This model assumed simple Newtonian rigid-body response 

characteristics, with Coulomb friction in the rotating joint. 

After the mathematical model was ready, and the model parameters governing the behavior of 

the muscle and joint fixture models were named, the models were imported to Mathworks 

Simulink technical simulation software. A few simplifying assumptions were taken during this 

process; these assumptions are documented in Section 4.2. Note that, at this point, most of the 

model parameters (except physical constants such as gravitational accelerations) were filled with 

dummy values. 

To determine the muscle-independent parameters of the fixture model, such as damping and 

rotational inertia, the reference spring model developed in Section 3.4 was imported into 

Simulink and “installed” in the fixture according to the dimensional structure shown in Fig. 11. 

The data from the reference spring oscillation tests of Section 3.4 were imported into the 

modeling environment, and the Simulink Parameter Estimation tool was executed to match the 

response of the simulated fixture to that of the experimental fixture, under reference spring 

stimulus. The Parameter Estimation dialog was permitted to vary the damping coefficient and the 

rotational inertia estimate; this yielded a close-fitting match between the simulation and the five 

real-life test reference spring oscillation test cases. 

To determine the muscle parameters, the reference spring model was removed from the 

simulation, and the muscle model was “installed” in the fixture according to the dimensional 

structure used during rotary muscle testing. The data from the staircase muscle tests of Section 

3.4 were then imported into the modeling environment, and the Simulink Parameter Estimation 

tool was executed to match the response of the simulated muscle to that of the experimental 
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muscle. This step was computationally intensive, and therefore proceeded slowly. At some 

stages, manual adjustments were made in some parameters based on qualitative knowledge of the 

model not available to the parametric search algorithm. More details on this process and its 

findings are documented in Section 4.2. 

3.6 CONTROLS FOR ANTAGONISTIC CONFIGURATION 

With a muscle model established, the Simulink test configuration was reorganized to support two 

simultaneously simulated muscles acting antagonistically. A simple joule heating model for these 

muscles was adopted, and its heating and cooling rates were set based on an ad-hoc empirical 

measurement of the fixture’s heating and cooling rates. 

The heater stimulus channels in the simulated two-channel joint setup were connected to a virtual 

discrete PID (proportional-integral-derivative) controller. Various steps were taken in an attempt 

to linearize the system for controls tuning; these steps and their outcomes are documented in 

Section 4.4. Finally, a controlled system was produced in-silico (i.e. numerical simulation), and 

the response of the system to various inputs and forcing stimuli were recorded. 

4 RESULTS 

4.1 PRELIMINARY TEST FINDINGS 

Preliminary tests comprised mostly ad-hoc procedures on temporary fixtures, plus the detailed 

characterizations T1 and T2. 

The earliest tests did not produce much useful quantitative information. The preliminary testing 

process demonstrated empirically that the selected precursor (20-lb Trilene XL Smooth Casting 

nylon fishing fiber) could be coiled into muscle form under a tension of 2.7 N, or 275 grams-

force. This value was selected as the standard coiling load for all subsequent testing. 
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The earliest preliminary tests also revealed several meaningful qualitative muscle properties, 

which influenced the design of the detailed tests T1 and T2. The muscles tended to permanently 

increase in length when heated under high load, but they returned to their original length if 

heated under low load. Furthermore, the muscles exhibited temperature-dependent contraction at 

all loads, and the degree of contraction (in percentage-points) did not appear to depend on load. 

Based on these findings, the procedures for T1 and T2 were developed to characterize the 

repeatable contraction and non-repeatable deformation behaviors of the muscle fibers, 

respectively. 

T1 yielded data along the axes of temperature, strain, load, and training temperature. Consider 

first several plots of strain data with respect to load at different peak training temperatures, 

shown in Fig. 12. In these illustrations, the temperature of each reading is indicated by coloring. 
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Fig. 12: T1 Raw Response Plots 
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Note that each of the plots in Fig. 12 describes a consistent contraction during heating, up to an 

approximately constant strain limit, at which the muscle cannot get any shorter. It appears that 

this contraction’s absolute magnitude is associated with the temperature, independent of the load 

on the muscle. 

To test this hypothesis, it is possible to strip the resting room temperature positional bias from 

each horizontal row of data points in the raw plots of Fig. 12. This is achieved by subtracting the 

strain value of the rightmost point (room temperature) in a given constant-load dataset from each 

data value within the same dataset. The result is a zero-bias metric indicating the degree of 

muscle contraction with respect to room temperature strain, herein named the contraction offset. 

Note that this quantity represents percentage points of difference in strain, and not percent 

change relative to any position. 

The plot of Fig. 13 illustrates the relationship between the contraction offset and temperature, for 

all the relevant data points in T1. Each colored line represents a set of data points taken under a 

fixed load (horizontal tuples in the raw response plots of Fig. 12).  Note the boundary condition 

associated with low loads, which causes a set of lines that stray from the primary trend. 
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Fig. 13: T1 Contraction Offset for All Samples 

 

Fig. 14: T1 Contraction Offset w/ Boundary Excluded 
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The plot in Fig. 14 shows the contraction data for all samples from the previous set of plots, 

excluding samples taken at 275 g and 475 g loads. It appears that eliminating this region of the 

sample space also eliminates the boundary effect shown in Fig. 13. Quadratic regression over the 

resulting dataset produces the fit of equation (3). 

𝑜𝑓𝑓𝑠𝑒𝑡 = −0.001279548572343𝑡2 + 0.001385427266603𝑡 + 0.846078596331288 (3) 

This fit is shown in Fig. 15. 

 

Fig. 15: T1 Contraction Offset Regression 
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As shown in Fig. 13, a boundary condition prevents the muscle from contracting fully in certain 

circumstances. In particular, this boundary condition appears to occur when contracting would 

cause the muscle’s overall strain to become smaller than a certain value. The final plot in Fig. 12 

shows that this effect is not simply a “hard cutoff”; instead, the contraction offset function 

changes when the muscle is operating below a strain value of 5%.  

The goal of detail testing is to suggest a mathematical model of muscle behavior. To keep this 

model simple, further analysis will assume low strain conditions (<5%) can be avoided during 

use, by mechanically forcing the muscle under that minimum tensile strain at all times. With this 

assumption, and with the newly created regression from Fig. 15, a temporary descriptive model 

can be created. This model is shown in equation (4). 

𝑐 = −0.00128𝑡2 + 0.00139𝑡 + 0.846  

𝜎 = {
𝑠 + 𝑐, 𝑠 + 𝑐 > 5
𝑢𝑛𝑑𝑒𝑓, 𝑠 + 𝑐 < 5

 
(4) 

In this model, 𝜎 is the actual strain in percentage points, 𝑐 is the contraction offset computed in 

Fig. 15, and 𝑠 is a quantity named “resting length” which must account for all phenomena not 

attributed to thermal muscle actuation. Future linear tests over artificial muscles must resolve the 

value of 𝑠, resting length, in various operating conditions. Any data point that is collected will be 

useful in this pursuit, because values for 𝑠 can be obtained by solving the equation 𝜎 = 𝑠 + 𝑐. 

Note that more information can be gleaned from T1, now that a basic model has been 

established. In particular, T1 shows the value of 𝑠 when a muscle is subjected to a fixed load and 

taken to a fixed temperature several times, for a variety of loads and temperatures, when starting 

from a known state similar to the state of a “virgin” muscle (trained at a high temperature and a 

low load). By solving the equation 𝜎 = 𝑠 + 𝑐, values of 𝑠 can be determined in these conditions. 
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Fig. 16 shows a plot of the values of 𝑠 given by T1 data for several different initial heating 

temperatures and loads investigated during T1. These values are computed from all valid data 

points and not just room temperature cases; this is the reason for the vertical lines at each tested 

load (each line illustrates the range of values observed). 

 

Fig. 16: T1 Values of Resting Length s for Various Loads and Initial Training 
Temperatures 

Fig. 16 reveals that increasing the training load can cause an increase in the resting length, but 

increasing the peak training temperature does not necessarily increase resting length. It also 

shows that, near high peak training temperatures, the rate of increase of 𝑠 with respect to the load 

goes up (in other words, the slope of the 𝑠-load curve increases). 
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Regression over this plot is omitted from this report, because the data points are too localized to 

produce useful regression information. Notwithstanding this fact, Fig. 16 illustrates a strong and 

conclusive limitation of the polymer artificial muscle technology: the resting length of the 

muscle depends strongly upon the current and past values of load and operating temperature, 

and this resting length value contributes as much to the overall length of the muscle fiber as the 

repeatable contraction effect highlighted by Haines et al. [5] and documented in Fig. 15. 

The behavior of the muscle during thermal cycling was not fully captured during this test; there 

was not sufficient time to parse and analyze all of these data points. To ensure a proper survey of 

performance, a sampling of thermal cycling data was selected for parsing, namely the pulsed 

temperature runs before the 675 g and 1075 g load tests at 90°C, 70°C, and 50°C. Fig. 17 shows 

all of these selected cycling processes in a single plot. Note that the common “sequence number” 

axis in Fig. 17 serves merely to illustrate the order of events; each separate outlined block of 

cycling events occurred at a different point in the T1 process. 

 

Fig. 17: T1 Cycling Behavior in Select Cases 
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In each outlined block within Fig. 17, the first sample occurs at room temperature, and the 

muscle is repeatedly heated to a higher temperature. Fig. 17 illustrates that the first heat cycle has 

the greatest effect on muscle resting length. At low loads or temperatures, this first heat cycle 

appears to completely “train” the muscle to its new resting length. At higher loads and 

temperatures, specifically the instance in which the 1075 g load is applied and the muscle is 

cycled to 90°C, the muscle resting length keeps increasing slightly with each cyclic application 

of heat. In other words, the result in Fig. 17 shows that thermal cycling has a much stronger 

effect on training during the first training cycle than on subsequent cycles. Only at high loads 

and temperatures does a significant cyclic non-repeatability become evident. 

Note that, to reduce time requirements, thermal cycling beyond the first training cycle was not 

performed during T2, based on the conclusions from the data shown in Fig. 17. 

Test T2 attempted to address a high-dimensional field of data, namely the hysteretic response of 

the resting muscle length 𝑠, using a reasonably small number of test data points. Unfortunately 

time did not permit a sufficiently complex analysis of the sample space of possible muscle 

temperature histories. Proper evaluation of muscle hysteresis in a reasonable timeframe would 

require the use of an automatic thermomechanical analyzer, which was not available for this test. 

Such an investigation may also require interpretation of high-dimensional data, a complex 

mathematical problem which falls outside the scope of this project. Because of these 

shortcomings, the results of T2 have been determined to be irrelevant for characterizing muscle 

response, and are omitted here. 

4.2 MODEL FINDINGS 

The selected model structure for the rotary fixture (independent of the muscle model) is shown in 

Fig. 18. 
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Fig. 18: Antagonistic Test Fixture Equivalent Model (adapted from [28]) 

The system of Fig. 18 is a simple dynamical rotor, without plane motion. The simple differential 

equation representation for this rotor is omitted here, as it is easily input directly to Simulink 

using symbolic elements. Note that the friction in the rotor is not assumed to be a linear velocity 

damper, and is instead modeled more accurately using an assumed Coulomb friction function. 
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The complicating factors in this model are the non-linear modulated transformer functions 

between the muscle/spring stimulus elements and the rotor. These elements possess length and 

tension properties, which impose torque functions on the rotor. To compute these torque 

functions, vector mathematics must be applied. The known vectors are: 

𝐴 = �̂�𝑋𝐴 − 𝑗̂𝑌𝐴 

�⃑⃑� = −�̂�𝑋𝐵 − 𝑗̂𝑌𝐵 

𝑟𝐴⃑⃑⃑⃑ = �̂�𝑟𝐴 cos 𝜃 + 𝑗̂𝑟𝐴 sin 𝜃 

𝑟𝐵⃑⃑ ⃑⃑ = −𝑖̂𝑟𝐵 cos 𝜃 − 𝑗̂𝑟𝐵 sin 𝜃 

The vectors of interest, namely the muscle/spring elements, can now be defined in terms of 

known quantities. The conclusive vectors are shown in equations (5) and (6); the vector lengths 

are shown in equations (7) and (8). 

𝑀𝐴⃑⃑ ⃑⃑ ⃑⃑ = 𝐴 − 𝑟𝐴⃑⃑⃑⃑  

𝑀𝐵
⃑⃑ ⃑⃑ ⃑⃑ = �⃑⃑� − 𝑟𝐵⃑⃑ ⃑⃑  

𝑀𝐴⃑⃑ ⃑⃑ ⃑⃑ = −�̂�𝑟𝐴 cos 𝜃 − 𝑗̂𝑟𝐴 sin 𝜃 + �̂�𝑋𝐴 − 𝑗̂𝑌𝐴 (5) 

𝑀𝐵
⃑⃑ ⃑⃑ ⃑⃑ = 𝑖̂𝑟𝐵 cos 𝜃 + 𝑗̂𝑟𝐵 sin 𝜃 − �̂�𝑋𝐵 − 𝑗̂𝑌𝐵 (6) 

𝐿𝐴 = |𝑀𝐴⃑⃑ ⃑⃑ ⃑⃑ | = √(𝑋𝐴 − 𝑟𝐴 cos 𝜃)2 + (−𝑌𝐴 − 𝑟𝐴 sin 𝜃)2 (7) 

𝐿𝐵 = |𝑀𝐵⃑⃑ ⃑⃑ ⃑⃑ | = √(−𝑋𝐵 + 𝑟𝐵 cos 𝜃)2 + (−𝑌𝐵 + 𝑟𝐵 sin 𝜃)2 (8) 

The length of each muscle/spring is now known in terms of the angle 𝜃 of the rotor. The torque 

on the rotor due to each muscle/spring element is a function of both rotor position (the 
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modulating factor) and the tensile force in the muscle/spring element, named 𝐹𝐴/𝐵 here. The 

conclusive torque quantities are shown as equations (9) and (10). 

𝜏𝐴⃑⃑ ⃑⃑ = 𝑟𝐴⃑⃑⃑⃑ × 𝐹𝐴⃑⃑⃑⃑⃑ = ||

�̂� 𝑗̂ �̂�
𝑟𝐴 cos 𝜃 𝑟𝐴 sin 𝜃 0

𝐹𝐴
𝐿𝐴
(𝑋𝐴 − 𝑟𝐴 cos 𝜃)

𝐹𝐴
𝐿𝐴
(−𝑌𝐴 − 𝑟𝐴 sin 𝜃) 0

|| 

= �̂� (
𝐹𝐴𝑟𝐴
𝐿𝐴

cos 𝜃 (−𝑌𝐴 − 𝑟𝐴 sin 𝜃) −
𝐹𝐴𝑟𝐴
𝐿𝐴

sin 𝜃 (𝑋𝐴 − 𝑟𝐴 cos 𝜃)) (9) 

𝜏𝐵⃑⃑⃑⃑⃑ = 𝑟𝐵⃑⃑ ⃑⃑ × 𝐹𝐵⃑⃑⃑⃑⃑ = ||

�̂� 𝑗̂ �̂�
−𝑟𝐵 cos 𝜃 −𝑟𝐵 sin 𝜃 0

𝐹𝐵
𝐿𝐵
(−𝑋𝐵 + 𝑟𝐵 cos 𝜃)

𝐹𝐵
𝐿𝐵
(−𝑌𝐵 + 𝑟𝐵 sin 𝜃) 0

|| 

= �̂� (−
𝐹𝐵𝑟𝐵
𝐿𝐵

cos 𝜃 (−𝑌𝐵 + 𝑟𝐵 sin 𝜃) +
𝐹𝐵𝑟𝐵
𝐿𝐵

sin 𝜃 (−𝑋𝐵 + 𝑟𝐵 cos 𝜃)) (10) 

While both of these expressions are non-linear, they are easily computed by simulation software 

and will therefore permit accurate simulation of fixture response without assumptions about the 

position of the rotor. Note that the lengths of the muscle/spring elements have also been 

computed; these serve as inputs to the constitutive models for the muscles and reference spring 

within the simulation. Those constitutive models produce force outputs, which may in turn be 

used to compute the torques on the rotor using equations (9) and (10). 

Note that the rotary antagonistic fixture was not capable of simultaneously heating an entire 

muscle to a consistent temperature; a length of the muscle under test was always resting at room 

temperature outside of the heating tube. To account for this effect without increasing model 

complexity, the “effective temperature” of the muscle in the simulated model was defined using 

a weighted average, as in equation (11): 
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𝑇𝑒𝑓𝑓 =
𝐿ℎ𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑒𝑎𝑡𝑒𝑟 + (𝐿𝑚𝑢𝑠𝑐𝑙𝑒 − 𝐿ℎ𝑒𝑎𝑡𝑒𝑟)𝑇𝑟𝑜𝑜𝑚

𝐿𝑚𝑢𝑠𝑐𝑙𝑒
 (11) 

 

The model for the reference spring was determined empirically and takes the form shown in 

equation (12), where 𝐹 is the tensile force in the spring in Newtons, and 𝑥  is the length of the 

spring in meters, measured between the two mounting pins on the antagonistic test fixture. 

𝐹 = 145.71𝑥 − 5.2097, 𝑥 ≥ 0.04682 (12) 

This linear model depicts a lossless capacitive element, which in turn is a good representation for 

an extension spring that is not in saturation. 

The constitutive model for the muscle itself was the most complicated aspect of the modeling 

exercise in this project. Based on the results from Section 4.1, a muscle model structure had to 

account for the following observed effects: 

1) MODULUS: The muscle exhibits a spring-like behavior, wherein any applied force 

generates a proportional deformation strain. 

2) HYST: The muscle exhibits a temperature- and load-history-dependent training effect, 

wherein the muscle’s “resting length” can be modified by manipulation of temperature 

and load. 

3) OFFSET: The muscle is prone to contraction when subjected to a temperature increase. 

The magnitude of the contraction in terms of absolute distance (percentage points strain) 

is a strong function of temperature, and does not depend on muscle load, if the other two 

observed effects are ignored. In this sense, the contraction appears in same ways 

analogous to the manipulation of the position input of a common series-elastic actuator. 
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The MODULUS effect is the easiest to 

model; it is merely a linear spring. The 

OFFSET effect is also simple to model, 

because this effect appears to occur 

independent of the other system effects. Thus 

the OFFSET can be modeled as a true 

positional offset source, with offset 

magnitude a function of temperature, 

positioned in series with the MODULUS 

element. 

The HYST effect is the most difficult to model, but it is common to use damper models for 

hysteretic effects. In fact, researchers working with polymer artificial muscles coiled from 

conductive thread showed that a damper model accurately described isothermal load-cycling 

hysteresis within their muscles (an effect not directly investigated here) [21]. A model based on 

this work provides a convenient starting point for this case. A fixed damper model in parallel 

with a spring models isothermal hysteresis, but more detail must be added to account for the 

muscle’s memory of its resting length. If a damper’s coefficient is negatively dependent upon 

temperature, the damper will permit fast deformations at high temperatures, but resist them at 

low temperatures, preventing recovery from a deformation achieved at high temperature. This is 

an accurate description of the observed muscle behavior. Thus, the HYST effect is modeled 

using a linear spring and damper in parallel, with the damper’s coefficient dependent upon 

temperature. For simplicity, the temperature dependence of the damper element is assumed 

linear. 

Fig. 19: Muscle Model 
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The model as described above is illustrated in Fig. 19. Note that this model does not account for 

the mass of the muscle, which is assumed to be negligible relative to the masses in the 

antagonistic rotary test fixture. 

From this point in the analysis, it is convenient to assess response in terms of relative strain. This 

strain will be assessed with respect to a “base length”, refined as the minimum length of the 

muscle before it has deformed. Strain is denoted in the simulation work associated with this 

paper using the character sigma (𝜎); this notation is continued here. 

𝜎 =
𝐿 − 𝐿𝑏𝑎𝑠𝑒
𝐿𝑏𝑎𝑠𝑒

 

And so: 

𝐿 = 𝐿𝑏𝑎𝑠𝑒 + 𝜎𝐿𝑏𝑎𝑠𝑒 

The most convenient mathematical interpretation of the muscle model will take 𝐿 or 𝜎 as an 

input, and produce the resulting tensile force as an output. Certain simplifications are necessary 

to accomplish this inversion. First, the springs must be modeled as tensile springs, which can 

only produce tensile force, and which cannot actuate below a certain threshold force. To invert 

this region of saturation, it is necessary to introduce a slight incline to the otherwise sharp cliff of 

saturation. Thus, a very small strain value 𝜖 is selected, and the spring forces follow in equations 

(13) and (14): 

𝐹𝐾ℎ𝑦𝑠𝑡 =

{
 
 

 
 𝐿𝑏𝑎𝑠𝑒(𝜎ℎ𝑦𝑠𝑡 − 𝜖)𝐾ℎ𝑦𝑠𝑡 + 𝐹ℎ𝑦𝑠𝑡𝑚𝑖𝑛 , 𝜎ℎ𝑦𝑠𝑡 > 𝜖

𝐹ℎ𝑦𝑠𝑡𝑚𝑖𝑛
𝜖

𝜎ℎ𝑦𝑠𝑡 , 0 < 𝜎ℎ𝑦𝑠𝑡 ≤ 𝜖

0, 𝜎ℎ𝑦𝑠𝑡 ≤ 0

 (13) 
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𝐹𝐾𝑚𝑜𝑑𝑢𝑙𝑢𝑠 =

{
 
 

 
 𝐿𝑏𝑎𝑠𝑒(𝜎 − 𝜎𝑜𝑓𝑓𝑠𝑒𝑡 − 𝜎ℎ𝑦𝑠𝑡 − 𝜖)𝐾𝑚𝑜𝑑𝑢𝑙𝑢𝑠 + 𝐹𝑚𝑜𝑑𝑢𝑙𝑢𝑠𝑚𝑖𝑛 , 𝜎 − 𝜎𝑜𝑓𝑓𝑠𝑒𝑡 − 𝜎ℎ𝑦𝑠𝑡 > 𝜖

𝐹𝑚𝑜𝑑𝑢𝑙𝑢𝑠𝑚𝑖𝑛
𝜖

(𝜎 − 𝜎𝑜𝑓𝑓𝑠𝑒𝑡 − 𝜎ℎ𝑦𝑠𝑡), 0 < (𝜎 − 𝜎𝑜𝑓𝑓𝑠𝑒𝑡 − 𝜎ℎ𝑦𝑠𝑡) ≤ 𝜖

0, (𝜎 − 𝜎𝑜𝑓𝑓𝑠𝑒𝑡 − 𝜎ℎ𝑦𝑠𝑡) ≤ 0

 (14) 

 

In equations (13) and (14), the expressions 𝐹ℎ𝑦𝑠𝑡𝑚𝑖𝑛 and 𝐹𝑚𝑜𝑑𝑢𝑙𝑢𝑠𝑚𝑖𝑛 are the minimum forces 

required to begin deforming the respective springs. The expression for damping is simple: 

𝐹𝐵ℎ𝑦𝑠𝑡 = 𝐵ℎ𝑦𝑠𝑡𝐿𝑏𝑎𝑠𝑒𝜎ℎ𝑦𝑠𝑡̇  

The sum of the forces is computed as follows, and yields a final differential equation 

representation in equation (15). 

𝐹𝐵ℎ𝑦𝑠𝑡 + 𝐹𝐾ℎ𝑦𝑠𝑡 − 𝐹𝐾𝑚𝑜𝑑𝑢𝑙𝑢𝑠 = 0 

𝐵ℎ𝑦𝑠𝑡𝐿𝑏𝑎𝑠𝑒𝜎ℎ𝑦𝑠𝑡̇ = 𝐹𝐾𝑚𝑜𝑑𝑢𝑙𝑢𝑠 − 𝐹𝐾ℎ𝑦𝑠𝑡 

𝜎ℎ𝑦𝑠𝑡̇ =
𝐹𝐾𝑚𝑜𝑑𝑢𝑙𝑢𝑠 − 𝐹𝐾ℎ𝑦𝑠𝑡

𝐵ℎ𝑦𝑠𝑡𝐿𝑏𝑎𝑠𝑒
 (15) 

The value of 𝜎𝑜𝑓𝑓𝑠𝑒𝑡 must be defined. The results from Section 4.1 showed that the offset 

element obeys a temperature law, which has been measured empirically. A quadratic relation 

appeared to provide a suitable temperature law, so the offset function is defined accordingly in 

equation (16): 

𝜎𝑜𝑓𝑓𝑠𝑒𝑡 = 𝐴𝑇2 + 𝐵𝑇 + 𝐶 (16) 

Note that, for consistency with the rest of the model, the value of 𝜎𝑜𝑓𝑓𝑠𝑒𝑡 was defined to have 

units of pure fractional strain, not percentage points. This is a departure from the notation used 

in Fig. 15 and related tests. 
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Finally, the relation between temperature and the coefficient of the HYST damping element must 

be defined. A linear relation is selected for simplicity, as shown in equation (17): 

𝐵ℎ𝑦𝑠𝑡 = 𝐻𝐵ℎ𝑦𝑠𝑡 (𝑇 + 𝑇ℎ𝑦𝑠𝑡𝑜𝑓𝑓𝑠𝑒𝑡) (17) 

All of the models documented here were simple enough to ingress into the MATLAB/Simulink 

environment. The Simulink model subsystem for the muscle itself is shown in Fig. 20. The 

complete subsystem for the fixture, configured with a single muscle, is shown in Fig. 21. Finally, 

the test configuration for the entire system (set up for the sawtooth test stimulus) is shown in Fig. 

22. 

 

Fig. 20: Simulink Muscle Subsystem 
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Fig. 21: Simulink Joint Subsystem w/ One Muscle 

 

Fig. 22: Complete Simulink Model w/ Experimental Stimulus 

4.3 PARAMETER ESTIMATION FINDINGS 

Before the parameters of the muscle could be determined, it was necessary to find the values of 

the rotor rotational inertia and damping. This was accomplished using the Simulink Parameter 

Estimation utility, over the five reference spring oscillation sample sets collected before muscle 

testing. Two separate parameter estimations were performed, one using the more accurate 

Coulomb damping model, and another using the less accurate but simpler linear damping model. 



 

46 

 

Table 1 shows the results of the reference spring parameter matching exercise. 

Table 1: Reference Spring Oscillation Parameter Matching Results 

Test Configuration Parameter Value 

Coulomb Damping 
Inertia J 0.00124103 kg − m2 

Damping D 0.00545940 N −m 

Linear Damping 
Inertia J 0.00131390 kg − m2 

Damping D 0.00415667 N −m 

 

The reference spring parameter matching exercise was trivial due to the small number of 

parameters under investigation. The muscle parameter matching exercise was much more 

computationally intensive and therefore slower. The parameters under analysis were 

[𝐹ℎ𝑦𝑠𝑡𝑚𝑖𝑛 , 𝐾ℎ𝑦𝑠𝑡, 𝐹𝑚𝑜𝑑𝑢𝑙𝑢𝑠𝑚𝑖𝑛 , 𝐾𝑚𝑜𝑑𝑢𝑙𝑢𝑠, 𝐻𝐵ℎ𝑦𝑠𝑡 , 𝑇ℎ𝑦𝑠𝑡𝑜𝑓𝑓𝑠𝑒𝑡 , 𝐴, 𝐵, 𝐶]. The 𝐹𝑚𝑜𝑑𝑢𝑙𝑢𝑠𝑚𝑖𝑛 and 

𝐾𝑚𝑜𝑑𝑢𝑙𝑢𝑠 parameters could be easily estimated based on the initial resting state of the system, but 

the remaining parameters had to be estimated computationally. Three staircase stimulus datasets 

with different load weights were selected as the estimation experiments; the data from these tests 

were imported into Simulink and a nonlinear parameter estimation exercise was executed (note 

that the Coulomb damping model was used for the fixture model in this step). The results of the 

estimation exercise are shown in Table 2. 

Table 2: Muscle Model Parameter Estimation Results 

Parameter Name Value Estimation Technique 

𝐴 −1.17832e − 05 1/K2 Computational Search 

𝐵 1.40992e − 05 1/K Computational Search 

𝐶 0.00881695 Computational Search 

𝐹ℎ𝑦𝑠𝑡𝑚𝑖𝑛 1.75489 N Computational Search 

𝐾ℎ𝑦𝑠𝑡 415.189
N

m
 

Computational Search 

𝐹𝑚𝑜𝑑𝑢𝑙𝑢𝑠𝑚𝑖𝑛 3.789 N Manual Estimation 

𝐾𝑚𝑜𝑑𝑢𝑙𝑢𝑠 186
N

m
 

Manual Estimation 

𝐻𝐵ℎ𝑦𝑠𝑡  −545.907 
N − s

m − K
 

Computational Search 



 

47 

 

𝑇ℎ𝑦𝑠𝑡𝑜𝑓𝑓𝑠𝑒𝑡 −243.380 ℃ Computational Search 

 

The estimation response curves are shown alongside the experimental data curves in Fig. 23, Fig. 

24 and Fig. 25. Note that all the data in these three figures were used as reference data in the 

parameter estimation exercise. 

 

Fig. 23: 139g Stimulus Experiment Parameter Matching Comparison 
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Fig. 24: 166g Stimulus Experiment Parameter Matching Comparison 

 

Fig. 25: 212g Stimulus Experiment Parameter Matching Comparison 
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Because all the staircase datasets were used in parameter estimation, the sawtooth dataset was 

selected as a downstream verification dataset. The output of the simulated system, when 

stimulated using the temperature curve from the sawtooth experiment, is shown in Fig. 26. 

 

Fig. 26: Downstream Verification Comparison of Measured and Simulated 
Response Datasets for Sawtooth Stimulus Experiment 

Note that the downstream verification plot closely follows the general trend of the experimental 

plot. The saturation condition (in which the coils of the muscle fiber press up against one 

another) was not modeled in the simulated muscle element, and the resulting error in response 

can be observed in the first two peaks of Fig. 26. Simulation noise can also be observed in the 

first two relaxations of Fig. 26; this noise was caused by overshoot inside the spring saturation 

regions of the muscle model. If these two phenomena are ignored, the simulated response 

appears to be an accurate reproduction of the real-world system output. 

To confirm the above assumptions about the origins of error in Fig. 26, the muscle model and 

simulation configuration were augmented using small changes designed to address hypothetical 
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problems. First, a simple model for the saturation condition illustrated by Fig. 26 was introduced 

to the augmented muscle model. The condition was modeled as a very rigid spring with 

coefficient 𝐾𝜖, only actuating for 𝜎 < 0, as described by equation (18): 

𝐹𝜖 = {
𝐾𝜖𝜎, 𝜎 < 0
0, 𝜎 ≥ 0

 (18) 

The force 𝐹𝜖 of equation (18) was added to the muscle force, which effectively placed the rigid 

saturation spring in parallel with the muscle model. Note that the “slack muscle” condition was 

not modeled; it was assumed that the muscle remained taut during the entire test process. The 

resulting augmented muscle model is shown in Fig. 27. 

 

Fig. 27: Muscle Model w/ Added Saturation Condition 

After the saturation model was added to the simulation, the time resolution of the simulation was 

increased, and the parasitic parameters 𝜖 and 𝐾𝜖 were manually adjusted to eliminate the noise 

effect. The resulting plot, with saturation added and resolution increased, is shown in Fig. 28 (the 

temperature and mass datasets are omitted, as these plots are identical to those shown in Fig. 26). 

Fig. 28 confirms that the changes made during augmentation reduced the errors observed in Fig. 
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26, and further confirms that the augmented muscle model is a close analog for the real-world 

muscle. Note that while the augmented muscle model is the best model produced thus far, Fig. 

28 cannot itself serve as an evaluation metric for the computerized parameter estimation attempt, 

because the augmented model was influenced by additional human modeling decisions made in 

light of the response to the downstream verification dataset. Fig. 28 simply provides evidence 

that the hypothesized sources of error in Fig. 26 were in fact true sources of error. 

 

Fig. 28: Augmented Muscle Model Response to Downstream Verification 
Sawtooth Stimulus 

A future version of the model might benefit from a non-linear temperature-damper relation, or 

even Coulomb-style damping, in the HYST element of the muscle. Such a change could 

eliminate unwanted drift in the simulated response at room temperature, which can be observed 

near the end of the time series of Fig. 26 and Fig. 28. 
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4.4 CONTROLS FINDINGS 

The ultimate goal of this project was to develop an environment for investigating controls for 

polymer artificial muscles, and to demonstrate a potential controls model. For simplicity, PI 

(proportional-integral) control was selected as the controller type. Simulink conveniently 

includes a discrete PI controller block, so the test simulation environment was set up around that 

controller block. 

For the in-silico controls test, the simulated joint model was updated to include two 

antagonistically coupled muscle models, as shown in Fig. 29. 

 

Fig. 29: Antagonistic Simulation Arrangement 

Note that this antagonistic model used the simpler, linear model for damping, instead of the non-

linear Coulomb model. The antagonistic model also included the augmented version of the 

muscle model, described in Section 4.3. 

Heating was simulated using a linear energy flow model, and cooling was simulated according to 

Newton’s cooling law. The rate coefficients for each of these models were empirically measured 

using a real heater tube, so the simulated heating and cooling rates would match real-world 
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properties for the antagonistic test fixture. While the real fixture used PWM signals to control 

heating, the simulated model used a true analog scaling function to emulate PWM. This 

simplification allowed the model to run at a lower time-precision. The true scale of the Arduino’s 

PWM signal function (0-255) was used as the input scale of the linearized PWM element, to 

facilitate easy transfer of the model in-silico to a real-world implementation. 

The controller output was limited to one muscle at a time: positive controller output stimulated 

one muscle, while negative controller output stimulated the other. The full controller model, 

encapsulating the rotary fixture subsystem, is shown in Fig. 30. This figure represents the 

culmination of work in this project, as no real-world antagonistic controller testing was 

performed. 

 

Fig. 30: In-Silico Antagonistic Controller System 

The plant of Fig. 30 could not be linearized automatically by the computer, so a closed-loop 

manual linearization was performed using Simulink’s built in PID Tuner Closed Loop Snapshot 

Linearization tool. Manual best-guess P and I parameters were selected, and the closed-loop 

snapshot was taken near the end of a step-response plot. Simulink’s built-in PID tuner was then 

allowed to estimate parameters for a high-speed controller. The step response for the 

computationally-tuned controller is shown in Fig. 31. 
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Fig. 31: PI Controller Step Response 

The effect of “re-training” in the HYST element of the muscle model provoked concern about 

the PI controller’s ability to maintain zero steady-state error during repeated cycling events and 

non-constant loads. To test the validity of this concern, various test stimuli were applied to the 

in-silico model. 

First, a symmetric pulsed input was applied. The response is shown in Fig. 32. 

 

Fig. 32: PI Controller Square Response 
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Next, a step input was applied, and a mass stimulus was applied instantaneously, after a delay 

period. The response is shown in Fig. 33. This outcome serves to illustrate the rotary system’s 

ability to compensate for changes in applied load. 

 

Fig. 33: PI Controller Mass Step Response 

Next, during a normal step response, the mass stimulus was fluctuated using sine wave functions 

of increasing frequencies. The resulting response curves are shown in Fig. 34, Fig. 35 and Fig. 

36. Note that the system is highly sensitive to external load stimulus, because of the intrinsic 

pliability present in the MODULUS element of the muscle model.  
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Fig. 34: PI Controller Response to 0.0318 Hz Sine Mass Stimulus 

 

Fig. 35: PI Controller Response to 0.1592 Hz Sine Mass Stimulus 
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Fig. 36: PI Controller Response to 0.4775 Hz Sine Mass Stimulus 

Finally, the mass was set to zero, and the setpoint function was stimulated using sine waves of 

various frequencies. The resulting response curves are shown in Fig. 37, Fig. 38 and Fig. 39. 

Note that the system is prone to runaway oscillation if the setpoint changes too rapidly, but that 

reasonably close tracking is obtained as long as the setpoint stimulus changes slowly. 

 

Fig. 37: PI Controller Response to 0.0318 Hz Sine Setpoint Stimulus 
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Fig. 38: PI Controller Response to 0.1592 Setpoint Stimulus 

 

Fig. 39: PI Controller Response to 0.4775 Hz Sine Setpoint Stimulus 

5 DISCUSSION AND CONCLUSIONS 

5.1 APPLICATION NOTES 

The international patent application [22] referenced in the seminal work [5] lists several potential 

applications for the coiled artificial muscles. Proposed applications include pumps and valve 

drivers for small-scale or even microscopic equipment, spacecraft solar panel 

expansion/alignment, car door lock actuation (and other solenoid applications), peristaltic pumps 
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using sequentially actuated fiber segments, optical device actuators, haptic feedback devices, 

porosity control, and various other applications. This section treats a few of those proposed 

applications in context of the controls findings from the project. 

In brief, this project found that twisted polymer artificial muscles could actuate repeatably under 

constant loads, but changed operating region (“resting length”) when subjected to varying loads 

during operation. This outcome suggests that applications for the muscles fall into two broad 

categories: those that impart unpredictably varying tension on the fiber element, and those that 

produce repeatable or constant loading profiles. Instances that require constant loading profiles 

are immediate candidates for application of the muscle technology discussed herein, as the 

muscles become very easy to model when they do not undergo a change in resting length. 

Examples include some valves and pumps, solenoid applications, optical device actuators, and 

purely visual event controllers (e.g. facial features on a humanoid robot). 

Use cases in which the load profile range is unpredictable, or simply very wide, may still be 

candidates for application of twisted polymer muscle technology, but these applications will 

require more careful control and may exhibit range-of-motion limitations. Examples of more 

challenging applications include haptic feedback, complex manifold control and pumping, 

reversible spacecraft solar panel or solar sail expansion, and pure robotics actuation (e.g. 

humanoid joint movement). Recent work by Yip and Niemeyer [21] showed that twisted 

polymer muscles spun from whole conductive threads (rather than monofilaments) made suitable 

actuators for a robotic hand. That research did not investigate or report on in-situ training effects, 

which could impact grasping strength or limit muscle range of motion, but the success of a 

relatively complex application bodes well for this technology. 
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Note that the applications for twisted polymer muscles are not identical to those applications 

previously documented for traditional muscle analogs, though there is some overlap. The 

polymer muscles are especially flexible, and very weight-efficient, so they are well suited to 

space applications. Because of their low power efficiency, they are poorly suited for traditional 

power robotics applications such as dynamic manipulation. Nevertheless, as shown in this 

project, these artificial muscles may still find applications in power robotics. Consider a robotic 

linkage containing clutches, brakes or dampers at its joints. This kind of element is common if an 

armature will be subjected to unknown forces, or simply needs to be back drivable. Twisted 

polymer muscles may satisfactorily control the dynamical parameters in those kinds of auxiliary 

drive elements, while more traditional actuators execute primary actuation maneuvers. 

5.2 FURTHER RESEARCH 

Targets for future research include more precise thermal characterizations of muscle properties, 

better mathematical modeling, mitigation methods for the “retraining” effect, and faster cooling. 

Specifically, future projects should investigate surface-layer or intrinsic heating elements, rather 

than using large external heater tubes with unnecessarily high heat capacities. Haines et al. [5] 

and Mirvakili et al. [25] have already shown that silver coatings or paints can be used as surface-

layer heating elements. Yip and Niemeyer [21] have demonstrated that this method of heating 

still works when muscles are coiled from whole threads (rather than monofilaments). At a 

minimum, it is recommended that future experimenters attempt to obtain pre-plated precursor 

fibers or the proper SPI Flash-Dry paint compound, in order to reproduce the heating elements 

from [5] and/or [25]. 
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The major challenge for surface-layer heating is cost, as silver is typically the conductive agent. 

A safe, flexible, low cost alternative surface heating agent would be useful to drive down the cost 

of high-speed muscles. This is a potential area for future research. 

The issue of re-training during loading at temperature remains a controls challenge, though many 

applications can avoid this problem by imparting predictable loads on the muscle. Yip and 

Niemeyer [21] did not report the re-training effect, but their muscles were constructed from 

thread precursors, and treated during “initial training” at a higher peak temperature. It is possible 

that one of these changes in precursor or process reduced the muscles’ propensity for complex 

hysteretic behavior ([21] reports a fairly straightforward hysteresis loop effect during isothermal 

load variation). Further investigation or coordination with those researchers may reveal useful 

information. 

The geometric means by which the polymer muscles achieve actuation should be transferrable to 

other materials with similar molecular structures. Further research into the materials background 

for the effects documented herein could reveal a precursor material that yields higher efficiency, 

or reduces the re-training effect.  

In a push toward testing efficiency, future projects should work to develop more precise, more 

automated, non-inertial test fixtures, in which applied force functions are generated using a 

control system and not using a hanging weight or spring. This development effort could be 

avoided by the acquisition of a thermomechanical analysis machine, but there will always be 

some advantages to developing custom test fixtures with the target application in mind. 
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5.3 PROJECT CONCLUSION 

The research performed in this project demonstrated that the twisted polymer artificial muscles 

of Haines et al. [5] contain useful features, but are also subject to certain mechanical limitations 

associated with model complexity. While other researchers have characterized the initial training 

of the muscle, no known published work has documented the property of re-training during load 

changes at high temperature. This project produced empirical evidence for that effect, and further 

documented a simple model with predictive power over the artificial muscle fibers. 

The robotic design portion of this project was simple, but it provided the author with an 

opportunity to develop a research tool that functioned like a potential application device, namely 

the antagonistic muscle fixture. While the fixture was never configured or operated in the full 

antagonistic configuration, it was used to collect empirical data that drove in-silico testing, and it 

could be easily re-used by a future researcher for similar testing. Design challenges in this 

project included test device integration, low-impact mechanical measurement, and unknown 

operating parameters of the muscle. The fixture’s construction is extremely strong; it was 

designed to accommodate several muscles acting in parallel under high tension. Finite element 

analyses for critical parts, while omitted from this report for brevity, are included in the reference 

package design files. 

In conclusion, the author wishes to thank the countless supporting parties to this work, and to 

reiterate that the technology treated herein holds promise for application in the field of soft 

robotics, and in a broad range of other technical fields. Twisted polymer artificial muscles are 

not without their limitations, but this low-cost, lightweight alternative to more traditional 

electromechanical actuators indicates an early step in the right direction for soft robotics 

actuation. 
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APPENDIX A ANTAGONISTIC STIMULUS FIXTURE DESIGN DOCUMENTS 

The following pages contain mechanical specification drawings for the antagonistic figure. These 

drawings provide reference and replication information for the fixture provided to the Soft Robotics 

Laboratory at WPI.  
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APPENDIX B ANTAGONISTIC STIMULUS FIXTURE SOFTWARE 

This appendix lists the primary source code files necessary for the operation of the antagonistic test 

fixture. Note that additional simple scripts were also created, using the same libraries, to facilitate tests 

without temperature stimuli, and calibration runs. An older, single channel version of the antagonistic 

test script was also used for tubular heater control. These ancillary scripts are omitted from this report 

for brevity, but all test scripts from this project are in custody of the WPI Soft Robotics Laboratory, c/o 

Prof. Cagdas Onal. As noted previously, this project did not use any source control repository or formal 

versioning, because the number of software tools developed was so small. 

Source and license information is provided for each program, under its header. All *.ino programs are 

intended to execute on the Arduino Duemilanove or Uno board, and all *.py programs and modules are 

designed to execute under Python 2.7.10 32-bit. 

License Text – MIT License (See notes about granular application) 
NOTE: THIS LICENSE NOTICE APPLIES GRANULARLY TO THE FILES 

arduino.py 

prototype/prototype.ino 

AND NOT TO ANY OTHER FILES IN THIS MQP, INCLUDING THE PROJECT REPORT IN WHICH COPIES OF THE LICENSED 

FILES HAVE BEEN EMBEDDED 

 

Copyright (c) 2009-2010 Akash Manohar J <akash@akash.im> 

 

Permission is hereby granted, free of charge, to any person obtaining a copy 

of this software and associated documentation files (the "Software"), to deal 

in the Software without restriction, including without limitation the rights 

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 

copies of the Software, and to permit persons to whom the Software is 

furnished to do so, subject to the following conditions: 

 

The above copyright notice and this permission notice shall be included in 

all copies or substantial portions of the Software. 

 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 

THE SOFTWARE. 

 

Arduino Interface Program – prototype/prototype.ino 
#ifndef SERIAL_RATE 

#define SERIAL_RATE         115200 

#endif 

 

#ifndef SERIAL_TIMEOUT 

#define SERIAL_TIMEOUT      5 
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#endif 

 

void setup() { 

    Serial.begin(SERIAL_RATE); 

    Serial.setTimeout(SERIAL_TIMEOUT); 

} 

 

void loop() { 

     

    int pin = 0; 

     

    switch (readData()) { 

        case 0 : 

            //set digital low 

            //set digital high 

            pin = readData(); 

            pinMode(pin, OUTPUT); 

            digitalWrite(pin, LOW); break; 

        case 1 : 

            //set digital high 

            pin = readData(); 

            pinMode(pin, OUTPUT); 

            digitalWrite(pin, HIGH); break; 

        case 2 : 

            //get digital value 

            Serial.println(digitalRead(readData())); break; 

        case 3 : 

            // set analog value 

            pin = readData(); 

            pinMode(pin, OUTPUT); 

            analogWrite(pin, readData()); break; 

        case 4 : 

            //read analog value 

            Serial.println(analogRead(readData())); break; 

        case 99: 

            //just dummy to cancel the current read, needed to prevent lock  

            //when the PC side dropped the "w" that we sent 

            break; 

    } 

} 

 

char readData() { 

    Serial.println("w"); 

    while(1) { 

        if(Serial.available() > 0) { 

            return Serial.parseInt(); 

        } 

    } 

} 

 

Arduino Prototyping Interface Script – arduino.py 
#!/usr/bin/env python 

# -*- coding: utf-8 -*- 

 

import serial 

import time 

 

class Arduino(object): 

 

    def __init__(self, port, baudrate=115200): 

        self.serial = serial.Serial(port, baudrate, timeout=1) 

        self.serial.write(b'99') 

 

    def __str__(self): 

        return "Arduino is on port %s at %d baudrate" %(self.serial.port, self.serial.baudrate) 

 

    def setLow(self, pin): 

        self.__sendData('0') 

        self.__sendData(pin) 

        return True 
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    def setHigh(self, pin): 

        self.__sendData('1') 

        self.__sendData(pin) 

        return True 

 

    def getState(self, pin): 

        self.__sendData('2') 

        self.__sendData(pin) 

        return self.__formatPinState(self.__getData()[0]) 

 

    def analogWrite(self, pin, value): 

        self.__sendData('3') 

        self.__sendData(pin) 

        self.__sendData(int(value)) 

        return True 

 

    def analogRead(self, pin): 

        self.__sendData('4') 

        self.__sendData(pin) 

        return self.__getData() 

 

    def __sendData(self, serial_data): 

        while(self.__getData()[0] != "w"): 

            pass 

        serial_data = str(serial_data).encode('utf-8') 

        self.serial.write(serial_data) 

 

    def __getData(self): 

        input_string = self.serial.readline() 

        if input_string is None: 

            return "\n" 

        else: 

            input_string = input_string.decode('utf-8') 

            return input_string.rstrip('\n') 

 

    def __formatPinState(self, pinValue): 

        if pinValue == '1': 

            return True 

        else: 

            return False 

 

    def close(self): 

        self.serial.close() 

        return True 

 

AMPROBE TMD-56 Interface Module Script – amprobe.py (See notes about granular license 

application) 
# This source is based on code from the artisan-roaster-scope project at https://github.com/artisan-

roaster-scope/artisan 

# The artisan-roaster-scope project is licensed under GPL v3. To comply with the terms of that license, 

GPL v3 applies granularly 

# to this file. Note that the GPL v3 does not apply to the other files in the Polymer Muscle MQP 

project, INCLUDING THE PROJECT REPORT IN WHICH COPIES OF THE LICENSED FILES HAVE BEEN EMBEDDED, unless 

otherwise specified. 

 

# This program provides an interface to the Amprobe TMD-56 thermocouple meter T1 and T2 in Python 

 

# REQUIREMENTS 

# python 

# pyserial 

 

import serial 

import time 

import binascii 

from threading import Thread, Lock 

 

 

class AmprobeMeter: 
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    __stableT1 = 0 

    __stableT2 = 0 

    port = '' 

    __thread = None 

    __lock = None 

     

    def __init__(self, port): 

        self.port = port 

        self.__lock = Lock() 

        self.__thread = Thread(target=self.__readMeter) 

        self.__thread.daemon = 1 

        self.__thread.start() 

     

    def getTemperatures(self): 

        with self.__lock: 

            return self.__stableT1, self.__stableT2 

             

 

    def __readMeter(self): 

        while(self.__thread.isAlive()): 

            try: 

                ser = serial.Serial(self.port, baudrate=19200, bytesize=8, parity='E', stopbits=1, 

timeout=1) 

                command = "#0A0000NA2\r\n"  

                ser.write(command) 

                r = ser.read(14) 

                ser.close() 

 

                #convert to binary to hex string 

                s1 = binascii.hexlify(r[5] + r[6]) 

                s2 = binascii.hexlify(r[10]+ r[11]) 

 

                #we convert the strings to integers. Divide by 10.0 (decimal position) 

                t1 = int(s1,16)/10.  

                t2 = int(s2,16)/10. 

                 

                with self.__lock: 

                    self.__stableT1 = t1 

                    self.__stableT2 = t2 

                 

            except serial.SerialException, e: 

                print e 

 

Temperature Control, Test and Logging Script – tempTest.py 
import amprobe 

import time 

import datetime 

import arduino 

from threading import Thread, Lock 

 

class TempController: 

    __arduinoA = None 

    __arduinoB = None 

    __meter = None 

    __pinA = 0 

    __pinB = 0 

    __thread = None 

    __outputThread = None 

    __prevUpdateTime = 0 

    __period = 0 

    __mainThreadLock = None 

    __outputThreadLock = None 

    __enabled = 0 

    __currentOutputA = 0 

    __currentOutputB = 0 

    __setpointA = 0 

    __setpointB = 0 

    __kC = 0 

    __kF = 0 

    __kP = 0 
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    __kI = 0 

    __ILimit = 0 

    __accumulatorA = 0 

    __accumulatorB = 0 

    __prevUnstableTimeA = 0 

    __prevUnstableTimeB = 0 

    __tempStableA = 0 

    __tempStableB = 0 

    __controlScale = 0.55 

     

    __temperatureUpdate = 0 

    __currentTemperatureA = 0 

    __currentTemperatureB = 0 

    __prevTemperatureA = 0 

    __prevTemperatureB = 0 

    __temperatureSteadyTime = 10 

    __tempThresh = 1.0 

     

    def __init__(self, arduinoAPort, arduinoBPort, amprobePort, temperaturePinA, temperaturePinB, 

updatePeriod,\ 

                 kC, kF, kP, kI, accumLimit, logFileName): 

        self.__arduinoA = arduino.Arduino(arduinoAPort) 

        self.__arduinoB = arduino.Arduino(arduinoBPort) 

        time.sleep(1) 

        self.__meter = amprobe.AmprobeMeter(amprobePort) 

        self.__pinA = temperaturePinA 

        self.__pinB = temperaturePinB 

        self.__period = updatePeriod 

        self.__prevUpdateTimeA = time.time() 

        self.__prevUpdateTimeB = self.__prevUpdateTimeA 

        self.__prevUnstableTimeA = self.__prevUpdateTimeA 

        self.__prevUnstableTimeB = self.__prevUpdateTimeB 

        self.__kC = kC  

        self.__kF = kF 

        self.__kP = kP 

        self.__kI = kI 

        self.__ILimit = accumLimit 

        self.__logFile = open(logFileName, 'w') 

         

        self.__mainThreadLock = Lock() 

        self.__mainThread = Thread(target=self.__updateController) 

        self.__mainThread.daemon = 1 

        self.__mainThread.start() 

         

        self.__outputThreadLock = Lock() 

        self.__outputThread = Thread(target=self.__writeToOutput) 

        self.__outputThread.daemon = 1 

        self.__outputThread.start() 

         

         

    def setEnabled(self, enabled): 

        with self.__mainThreadLock: 

            self.__enabled = enabled 

         

            # turn on LED if controller is enabled 

            # turn off LED and heater if controller is disabled 

            if enabled: 

                header="Time (s), Temperature A (C), Setpoint A (C), Temperature Stable A, Temperature B 

(C), Setpoint B (C), Temperature Stable B, Temperature Update, Potentiometer Reading" 

                print header 

                self.__logFile.write(header + '\n') 

                self.__arduinoA.setHigh(13) 

            else: 

                time.sleep(0.5) 

                self.__arduinoA.setLow(13) 

                 

                with self.__outputThreadLock: 

                    self.__arduinoB.analogWrite(self.__pinA, 0) 

                    self.__arduinoB.analogWrite(self.__pinB, 0) 

             

    def setSetpoint(self, setpointA, setpointB): 
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        with self.__mainThreadLock: 

            self.__temperatureUpdate = 1 

            self.__setpointA = setpointA 

            self.__setpointB = setpointB 

 

            self.__tempStable = 0 

             

    def stableTemperatureA(self): 

        with self.__mainThreadLock: 

            return self.__tempStableA 

             

    def stableTemperatureB(self): 

        with self.__mainThreadLock: 

            return self.__tempStableB 

         

    def __updateController(self): 

        while self.__mainThread.isAlive(): 

            currentTime = time.time() 

            if currentTime - self.__prevUpdateTime >= self.__period: 

                self.__prevUpdateTime = currentTime 

                 

                # update temperature 

                # get thread-safe copies 

                with self.__mainThreadLock: 

                    self.__prevTemperatureA = self.__currentTemperatureA 

                    self.__prevTemperatureB = self.__currentTemperatureB 

                    self.__currentTemperatureA = self.__meter.getTemperatures()[0] 

                    self.__currentTemperatureB = self.__meter.getTemperatures()[1] 

                     

                    if self.__currentTemperatureA > self.__setpointA + self.__tempThresh or 

self.__currentTemperatureA < self.__setpointA - self.__tempThresh: 

                        self.__prevUnstableTimeA = currentTime 

                         

                    if self.__currentTemperatureB > self.__setpointB + self.__tempThresh or 

self.__currentTemperatureB < self.__setpointB - self.__tempThresh: 

                        self.__prevUnstableTimeB = currentTime 

                     

                    self.__tempStableA = (currentTime - self.__prevUnstableTimeA) > 

self.__temperatureSteadyTime 

                    self.__tempStableB = True# Channel B is disabled (currentTime - 

self.__prevUnstableTimeB) > self.__temperatureSteadyTime 

                     

                    localEnabled = self.__enabled 

                     

                    localSetpointA = self.__setpointA 

                    localStableA = self.__tempStableA 

                    localSetpointB = self.__setpointB 

                    localStableB = self.__tempStableB 

                     

                    localTemperatureUpdate = self.__temperatureUpdate 

                    self.__temperatureUpdate = 0 

                 

                if localEnabled: 

                    errorA = localSetpointA - self.__currentTemperatureA 

                    errorB = localSetpointB - self.__currentTemperatureB 

                     

                    # compute integral state 

                    self.__accumulatorA += errorA * (currentTime - self.__prevUpdateTime) 

                    if self.__accumulatorA > self.__ILimit: 

                        self.__accumulatorA = self.__ILimit 

                    elif self.__accumulatorA < -self.__ILimit: 

                        self.__accumulatorA = -self.__ILimit 

                         

                    self.__accumulatorB += errorB * (currentTime - self.__prevUpdateTime) 

                    if self.__accumulatorB > self.__ILimit: 

                        self.__accumulatorB = self.__ILimit 

                    elif self.__accumulatorB < -self.__ILimit: 

                        self.__accumulatorB = -self.__ILimit 

                     

                    # compute output 
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                    outputA = self.__controlScale*(self.__kC + self.__kF*localSetpointA + 

self.__kP*errorA + self.__kI*self.__accumulatorA) 

                    if outputA>255: 

                        outputA = 255 

                    elif outputA<0: 

                        outputA = 0 

                     

                    outputB = self.__controlScale*(self.__kC + self.__kF*localSetpointB + 

self.__kP*errorB + self.__kI*self.__accumulatorB) 

                    if outputB>255: 

                        outputB = 255 

                    elif outputB<0: 

                        outputB = 0 

                     

                    with self.__mainThreadLock: 

                        self.__currentOutputA = outputA 

                        self.__currentOutputB = outputB 

                         

                    position = self.__arduinoA.analogRead(0) 

                     

                    logString = str(currentTime) + "," + str(self.__currentTemperatureA) + "," + 

str(localSetpointA) + "," + str(localStableA) + "," + str(self.__currentTemperatureB) + "," + 

str(localSetpointB) + "," + str(localStableB) + "," + str(localTemperatureUpdate)+ "," + position 

                    print logString 

                    self.__logFile.write(logString) 

         

    def __writeToOutput(self): 

        while self.__outputThread.isAlive(): 

            with self.__mainThreadLock: 

                outputA = self.__currentOutputA 

                outputB = 0# Channel B is disabled self.__currentOutputB 

                 

            with self.__outputThreadLock:                

                self.__arduinoB.analogWrite(self.__pinA, self.__currentOutputA) 

                self.__arduinoB.analogWrite(self.__pinB, self.__currentOutputB) 

             

            time.sleep(0.1) 

             

                     

# List temperature setpoints here 

# Both channel lists must specify the same number of temperature setpoints 

temperaturesA = [25,90,25,90] 

temperaturesB = [25,90,25,90]  

 

try: 

    time.sleep(1) 

    filename = raw_input("Enter a log file name: ") 

    timeInterval = 0.03 

    controller = TempController("COM4", "COM6", "COM8", 6, 5, timeInterval, kC=-55.4, kF=1.5, kP=30, 

kI=timeInterval*25.0, accumLimit=500, logFileName = "Log - " + datetime.datetime.today().strftime("%a 

%d-%m-%Y %H-%M-%S") + " - " + filename) 

     

    controller.setEnabled(1) 

    for i in range(len(temperaturesA)): 

        controller.setSetpoint(temperaturesA[i],temperaturesB[i]) 

        while not (controller.stableTemperatureA() and controller.stableTemperatureB()): 

            time.sleep(0.1) 

        raw_input() 

     

    print "Stopping test...\n\n" 

    controller.setEnabled(0) 

    print "Controller disabled.\n\n" 

         

         

except KeyboardInterrupt: 

    print "Stopping test...\n\n" 

    controller.setEnabled(0) 

    print "Controller disabled.\n\n" 
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APPENDIX C ANTAGONISTIC STIMULUS FIXTURE OPERATING INSTRUCTIONS 

Operating the antagonistic test fixture is straightforward. Fig. 10 (in section 3.3) shows the proper 

electrical and data-line configuration for the fixture. If an existing test script is to be used, that script will 

generally need to be modified slightly to suit the test at hand. For example, the names of COM ports and 

the lists of temperature set points may need to be changed. The scripts provided with the fixture are all 

very simple utility programs less than 500 lines. Detailed documentation of test script design is omitted, 

as it is assumed that any user of the fixture is well-versed in Python programming.  

These instructions assumed that the user has already configured or custom-designed a test script for their 

intended use of the fixture, and now seeks to execute a physical test using the fixture proper. 

The antagonistic test fixture may be configured in a purely antagonistic arrangement (two muscles 

antagonizing each other, with an optional spring or weight bias), a “dummy” antagonistic arrangement 

(one muscle fighting a spring or weight bias), or a purely dynamical arrangement (a combination of 

springs and weights that includes no muscle fibers). 

The purely dynamical arrangement is convenient for fixture calibration, and requires no muscle setup. 

Springs may be strung between fixturing pins, or bolted to the fixture body as convenient. Bias weights 

may be suspended from the plastic torque application disk using string or monofilament. A tie-off point 

of the suspension element has been included in the design of the torque application disk for this purpose. 

 When a bias weight of more than a few grams is applied, it is necessary to clamp the fixture to a solid 

work surface to prevent tipping. A DeWALT brand sliding clamp has been included with the fixture for 

this purpose; the clamp’s wide mouth permits various modes of fixturing as convenient. 

The processes for setting up the purely antagonistic arrangement and dummy antagonistic arrangement 

are identical. The bias weight or springs may be affixed to the fixture just as in the purely dynamical 
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arrangement, but a defined procedure must be followed in order to properly affix the muscles to the 

fixture: 

1. Insert a fixture pin (STATOR ROD in Appendix A) into the selected muscle mounting hole on 

either stator plate. 

2. Slide a heater tube onto the sample two-ply muscle fiber. 

3. Grasp the exposed bottom end (without the aluminum crimp) of the two-ply muscle fiber in two 

locations. Twist the fiber in a direction opposite the direction of ply. This will cause the ply to 

unwind temporarily, creating a gap between two singleton muscle fibers. 

4. Insert the end of the fixture pin into the gap formed in the muscle, then allow the muscle to relax. 

At this point, the heater tube should be captured between the crimped end of the muscle fiber and 

the bulge created by the infiltrating fixture pin. 

5. Gently draw the pin along the muscle’s length until it rests at one end of the muscle, adjacent to 

the terminal loop of fiber. Center the pin on the fixture body, inserting it into the second stator 

plate. At this point, the position of the muscle on the fixture pin may be adjusted if necessary. 

6. Allow the muscle to relax torsionally, then obtain a dummy fixture pin (any unused STATOR 

ROD or ROTOR ROD will do). 

7. Insert the dummy fixture pin into the dangling end of the muscle using the same method just 

applied with the stator pin, and gently draw it to the end of the fiber (adjacent to the metal 

crimp). 

8. Obtain a fixture pin for the rotor (ROTOR ROD in Appendix A), and insert it into the selected 

muscle mounting hole on the rotor. 

9. Rotate the dummy pin (which remains inserted in the dangling end of the muscle) until there is 

no torsional strain in the muscle fiber. 
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10. Align the end of the dummy pin with the rotor fixture pin. In most cases, the dummy pin will not 

come to rest perfectly in parallel with the fixture pin axis. Rotate the dummy pin the minimum 

amount necessary to align it closely with the fixture pin, then slide the muscle off the dummy pin 

and onto the rotor fixture pin. The goal is to transfer the muscle from the dummy pin to the 

fixture pin with minimal introduction of twist. 

The steps above may be applied for an arbitrary number of muscles. Multiple muscles may be strung to 

the same fixture pin(s), and multiple sets of fixture pins may be installed in the fixture as dictated by the 

test. 


